
Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

Incorporating Rule-based Pattern Recognition

Approach for Document Structure Classification

on Cloud-based Document Management System

Marisa M. Buctuanon*, John Leeroy A. Gadiane,

Franc Anthony Margallo and Paul Ryan Lucero
School of Computer Studies

University of San Jose - Recoletos – Basak Campus

Cebu City, 6000 Philippines
*marisamahilum@gmail.com

Date received: August 4, 2020

Revision accepted: June 2, 2021

Abstract

Numerous documents in the form of emails, business letters, reports and transactions

among others are created and received by many organizations. Thus, organizing them

is a challenge. There are various ways to organize documents such as according to the

header, sender, or content. However, following the rules in organizing documents

might not be consistent with organizations like schools as this may vary from one

person to another and is prone to human errors. The manual organization also

requires a lot of time and may lead to difficulty in finding the documents’ location.

Thus, this study aimed to develop an intelligent document organizing system named

Docudile. It is a self-organizing system that classifies each document and seamlessly

places them in the computer directory using the rule-based pattern recognition for

quick and accurate locating of documents. A cloud-based document management

system with storage that syncs documents from local storage to cloud server was also

developed to mitigate the inaccessibility of the documents when they are accessed from

a remote area. Term Frequency-Inverse Document Frequency (TF-IDF) was used to

retrieve the documents. Results showed that the system yielded 98 and 89% accuracy

in classifying and retrieving the documents, respectively, based on the rule-based

pattern recognition. Compared with Naïve Bayes Classifier and support vector

machine accuracy results, it was found that using cosine feature similarity of the rule-

based pattern recognition obtained a better accuracy in classifying school-related

documents. Furthermore, this study recommends that supporting documents should go

with the main document during the classification.

Keywords: automatic document classification, cloud-based document management

system, document structure classification, rule-based pattern recognition

M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

18

1. Introduction

Documents serve as means of communication between and within

organizations. They provide a way for organizations to give official

statements, standardize business processes and show business progress, proofs

of a transaction and transparency reports to name a few. A document is the

lifeblood of every business operation. However, documents tend to go missing

or are hard to find when there is no rule to follow to organize them in digital

storage. This kind of document mismanagement may result in business failure.

Integrating automatic document classification (ADC) on a file management

system would increase productivity between organizations and decrease

mismanagement risks (Goller et al., 2000). It labels documents based on their

content vis-à-vis to one or more predefined categories (Chagheri et al., 2011).

The document’s properties, also known as metadata such as title, author,

name, subject and keywords that identify its topic or content, reflect its

categorizations and use (Dourish et al., 2000). Augmenting a rule-based

framework for document structure classification that uses the document

properties enables the provision of an improved ADC. Another bottleneck of

document retrieval is when the document location is inaccessible at any time

of the day. The document might be stored somewhere else, and when there is

an urgent need to retrieve it, nothing can be done. Hence, finding a pattern to

follow in automating the document categorization and retrieval in online

storage was the direction of the present study.

The document structure is defined as the organization of a document into

graphical constituents like sections, paragraphs, sentences, bulleted lists and

figures (Power et al., 2003). This structure is the layout of a document

containing a significant amount of information that can be used to classify it

by type (Shin et al., 2001; Gulin and Frolov, 2016). Classifying the document

based on its structure has given interest to many researchers. Chagheri et al.

(2011) proposed an approach using structural elements of the document and

not just its content. The document structure used the tags of the XML

document. They utilized support vector machines (SVM) algorithm to classify

the document. However, their study focused only on XML documents and not

on scanned documents, which are commonly used by many organizations.

Hence, the scanned document was emphasized in this study. Similar to the

present work is the study of Dengel and Dubiel (1995), which described a

system that is capable of learning the presentation of business documents’

logical structures. Their system clusters the documents into structural concepts

and induces a concept of hierarchy taken as a source for classifying future

M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

19

input. The study of Al-Sabahi et al. (2018) introduced a different way of

creating the concept of hierarchy that is applied for logical labeling.

In the present study, rule-based pattern recognition has been introduced, which

simplifies the classification process. The documents did not undergo a training

process as this study utilized the structure of the document to create a rule-

based pattern recognition system. Thus, it eliminated the overhead costs.

The rule-based approach, which was employed in this study, has a knowledge

part represented by production rules which consist of IF condition and THEN

action or conclusion (Shaw and Fifer, 1986; Henderi et al., 2020). With the

rule-based approach added on pattern recognition, these rules must provide

uniqueness of the form feature definition of documents. If set up correctly, an

accurate and thorough form feature identification is achieved (Babic et al.,

2008). In pattern recognition, numerous systems differ from where a form

feature or a specific pattern is identified. One of which is syntactic pattern

recognition, wherein a set of a grammar containing some rules defines a

particular pattern (Babic et al., 2008). In the early 1960s and next two decades,

a syntactic approach was successfully applied by Flasiński and Jurek (2014)

for structurally-oriented recognition (SOR) problems. This proves that

document structure classification – a type of SOR – can be solved through

pattern recognition. However, this method has not been extensively explored.

Most studies focused on document classification through the Bayesian

approach, which ignores the document structure and concentrates more on the

content of the document.

This study aimed to show how a rule-based approach on pattern recognition is

used to classify the document based on its logical and content structure. The

logical structure is composed of the document’s heading and body sections.

The content structure refers to the title, date and other functional zones of the

document (Stede and Suriyawongkul, 2010). Also, this study exhibits a cloud-

based document management system (CDMC), where the documents in the

form of images are stored in and retrieved from a cloud storage platform

(CSP). Dropbox was utilized as the system’s CSP since it is fast syncing. That

is to say, the system offers more than document classification and cloud

storage. It can sync local documents to Dropbox and retrieve documents based

on their content or filename. This study’s utilization of the result of a rule-

based pattern recognition to generate a directory structure contributes to the

many uses of rule-based pattern recognition. This approach may be simple;

however, it gives a practical way to properly store and easily retrieve

M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

20

documents. This study also amplifies the reasons to use a rule-based pattern

to classify school-related documents.

2. Methodology

Docudile is the name of the system developed in this study. It is made using

Java Enterprise Edition, specifically, utilizing the Spring Framework and

Hibernate Object/Relational Mapping (ORM). The framework enables the

developer to program and configure the model without unnecessary ties to a

specific deployment environment while ORM provides ease in defining and

manipulating the database. Using the Dropbox SDK (Dropbox for Java

Developers, n.d.), the system can access and manipulate the Dropbox account

through user authentication. The system also integrates ABBYY® Cloud OCR

SDK (Cloud OCR SDK, n.d.) for optical character recognition (OCR).

This study had four major phases in incorporating a rule-based pattern

recognition approach for document structure classification: 1) image to text

conversion, 2) data preprocessing, 3) document structure generation and 4)

directory structure generation. Each phase is discussed further in the

succeeding sections. Additionally, managing the documents in the cloud,

which includes the syncing of documents from local storage to the cloud

server of Docudile and retrieving the document using Term Frequency-Inverse

Document Frequency (TF-IDF), is likewise elaborated.

2.1 Image to Text Conversion

Although digitalizing documents is recommended nowadays, many

organizations still produce hard copies of documents to communicate with

other organizations and within their premises. To save them digitally as an

image, the user needs to scan the document first and upload it to the system.

Figure 1a shows a sample of a scanned document uploaded to the system. The

image undergoes OCR to convert image to text. This is not yet the pattern

recognition; this phase only allows the system to process the document in a

text format instead of an image.

M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

21

Figure 1. Sample output of the OCR API

There are several options available for developers when using the API, namely

setting the language for recognition, font style used and image source. Since

most of the documents are in English, the language setting was set into this

language format. Knowingly, most of the documents are captured using

flatbed scanners. Therefore, the source was set to “scanner.” These settings

are important because they aid the API in recognizing the documents

correctly. The API returns the result in a single string format with only the

carriage return and the new line as the separator between the lines. The system

formats the result as shown in Figure 1b.

2.2 Data Preprocessing

Data preprocessing is a data mining technique that involves data cleaning,

normalization, transformation and several other preparations to produce

correct and useful data for further processing (García et al., 2015). In this

phase, the OCR result undergoes removal of all characters that are identified

as alphanumeric and whitespace. Removal of the occurrence of stop words

then follows because these words are unrelated to the actual document. After

which, the system identifies whether the words exist in the dictionary using

Java WordNet Library (JWNL) (Extended Java WordNet Library, n.d.).

Finally, stemming or acquiring the words’ base forms (Singh & Gupta, 2017)

is then applied through the same library. The system calls

stemWordwithWord, a method in JWNL that is responsible for returning the

(a) (b)

M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

22

stemmed equivalent of the word. Table 1 exhibits the data preprocessing result

shown in Figure 1. For sample demonstration, the content of the body shown

in this table is only from the first paragraph of the document.

Table 1. Data preprocessing result

Heading

INSTITUTE OF THE NON-FORMAL EDUCATION AND COMMUNITY OUTREACH

PROGRAM

Date: February 5, 2015

Dean, Department Office Heads

Subject: Voluntary Blood Donation 2015

Body

inform good office University San Jose-Recoletos Institute Non-Formal

Education Community Outreach Program (INFECOP) partnership

Department Health conduct Voluntary Blood Donation 8:00 a.m.

5:00 p.m. February 11-12, 2015, Main Lobby.

The basis on what pattern to follow is the logical and content structure of the

documents. It is observed that the heading part of the document contains vital

information as to how the documents are stored physically or digitally. The

heading structure of the documents in many organizations, particularly

schools, is either <OFFICE, DATE, TO, [THRU], SUBJECT> or <OFFICE,

DATE, SALUTATION>, which serves as rules in classifying the documents.

To further understand how these rules are applied to the system, the document

structure generation section provides the process.

2.3 Document Structure Generation

This phase is also considered the information extraction (IE) process of the

system in which the automatic extraction of structured information from

unstructured sources is done (Sarawagi, 2007). The system only extracts the

essential information of the document such as date, sender, recipient and

subject.

2.3.1 Regular Expression

To recognize the structure of the document and identify the tag of each line in

the heading, the system uses regular expression (regex). Regex is a pattern that

matches one or more strings of characters (Briiggemann-Klein, 1993; Lee et

al., 2016). Regex was implemented to form a feature definition of a document

and verify whether it has any match in the predefined pattern or rule. Table 2

illustrates the result of the regex process undergone by the heading section of

M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

23

the document. Here, the system evaluates each line’s tag as OFFICE, DATE,

TO and SUBJECT.

Table 2. Regular expression result

Heading

Text string Tag

INSTITUTE OF THE NON-FORMAL

EDUCATION AND COMMUNITY

OUTREACH PROGRAM

OFFICE

Date: February 5, 2015 DATE

Dean, Department Office Heads TO

Subject: Voluntary Blood Donation 2015 SUBJECT

Figure 2 displays the result done through the regex, where tags are labelled in

each part of the heading.

Figure 2. Regular expression result

Once the system recognizes the pattern of the document based on the result of

the regular expression, the system then identifies whether the document is a

memo, letter, or unclassified.

2.3.2 Feature Similarity Computation

The next process is to do feature similarity. In this study, feature similarity

means finding how much a document is considered either a memo, letter, or

unclassified using feature similarity computation. The IF-THEN rule-based

pattern is applied to do the classification. If the document structure is

<OFFICE, DATE, TO, [THRU], SUBJECT>, then the document is a memo.

If the document contains <OFFICE, DATE, SALUTATION>, then it is

M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

24

(1) Feature similarity

classified as a letter. Again, these patterns are observed every time a memo or

letter is written or received by a school organization. These two types of

documents are the only focus of the IF-THEN rules since they are most

commonly used in academic institutions. Any document having none of these

rules is considered unclassified. Unclassified documents do not have logical

and content structures, which can only contain images or tables. Further

discussion on unclassified documents is presented in the directory structure

generation section.

Table 3 displays the result of feature similarity. The system employs Equation

1 to compute the feature similarity of the document to the two predefined

structures, which are <OFFICE, DATE, TO, [THRU], SUBJECT> for a

memo and <OFFICE, DATE, SALUTATION> for a letter. The tag that is

enclosed in the square bracket means optional. After computation, Table 3

shows that the scanned document is classified as memo.

= ∑ ti

n

i=1

where t denotes the tags generated from the document from i to n or the total number

of tags.

Table 3. Feature similarity result

FS Tags

MEMO = 4 OFFICE, DATE, TO, SUBJECT

LETTER = 2 OFFICE, DATE

2.4 Directory Structure Generation

The document structure generation determines whether to generate a directory

structure of the document or classify the document from the existing directory.

If the directory structure of the document is already generated, the system

traverses the said directory, where the document is then stored.

The tags that were acquired earlier during regex are employed in this process.

These tags are the bases to form the hierarchical structure of the documents.

The hierarchical structure is also referred to as the directory structure of the

documents. Figure 3 is the result of the generated directory structure of the

document.

M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

25

Figure 3. Hierarchical structure

The unclassified documents, including, but not limited to certificates and

research, are stored in the “UNCLASSIFIED” directory. They are unclassified

since they do not contain the pattern for a memo or a letter. However, they are

still stored which can be also be used for document search and retrieval

operations. Furthermore, the system performs an additional set of operations

to manage the documents. The succeeding sections present the syncing of

documents from local storage to the cloud and retrieving them through TF-

IDF.

2.5 Local to Cloud Storage

The user can directly upload the documents to the cloud. However, if the

internet is slow or fluctuating, uploading them to the cloud takes time. To

resolve this, the system has the capability of syncing the local documents to

the cloud in the background. Using Docudile, the user can upload the scanned

documents and allow the system to store them locally in the meantime. Once

the machine has an internet connection, the system performs the syncing of

documents to the user’s Dropbox account. By default, the system syncs the

documents every 5 min using a jQuery script. The user can also manually

trigger the syncing. The jQuery script has a setTimeout method, which calls a

function every 5 s to check if it is already time to sync the documents to the

cloud. The system acquires a list of all directories and documents with their

corresponding metadata from the cloud storage. The metadata includes the

storage path, file name, upload date and username of the uploader. Since

multiple users can use one cloud account in an organization’s particular office,

the system logs this information for future inventory. However, the system can

only retrieve all directories and metadata during the scheduled time for

syncing. Beyond that, the system does not retrieve the local changes. The

M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

26

(2)

(3)

system compares its own saved list with the current state of the local storage

when syncing occurs. The system deletes any document in the cloud that are

unfound in the local storage. It also overwrites the documents in the cloud with

a timestamp that is behind the timestamp of the equivalent document in the

local storage. Afterward, the system only syncs documents that are not present

in the cloud. This optimized process helps the system avoid redundancy and

the heavy load in document syncing.

2.6 Document Search and Retrieval

The system can also handle the document management system’s default

operations like the store, replace and delete. These functionalities were taken

care of by the default libraries bundled with Java and the I/O library of

Apache. One of the most relevant features of this system is the document

search and retrieval functionality. The study utilized the TF-IDF algorithm to

capture the need for easy and fast retrieval of documents upon searching. TF-

IDF shows the relevance of the search keys to the documents. It calculates the

values for each word in a document through an inverse proportion of the word

frequency in a document to the percentage of each word that appears (Ramos,

2003). Here, the search and retrieval do not only find a document based on its

filename but also its contents. These features involve two phases: generating

of document index and actual searching of the document. The first phase

happens during the uploading of the document. This computes the IDF values

of each index. The TF (term, document) is computed by counting the number

of times the term appears in a document. After calculating each index’s IDF

values using Equation 2 and its TF, the TF-IDF values are then obtained using

Equation 3. Table 4 illustrates the sample bag of words present in the

database, their IDF values, term frequency values, and TF-IDF values. The

TF-IDF values of each index are stored in the database to optimize the search

process. After calculating the TF-IDF values, the document length is also

calculated (Equation 4) since it plays a vital role in the search process.

IDF(term) = log
e

(
Total number of documents

Number of documents with term in it
)

TF-IDF(term, document) = TF(term, document) × IDF(term)

M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

27

Document length (document) (4)

(5)

Search length (search) (6)

Table 4. TF-IDF calculation

Term T Blood University Donation Student Emergency

IDF

(term)

3.9657 0.3945 6.9657 5.211 1.3219

TF

(term,

document)

1 1 1 0 2

TF-IDF

(term,

document)

3.9657 0.3945 6.69657 0 2.6438

 = √∑ TF-IDF(term, document)
2

t∈d

The next phase is for the user to look for a particular document. Supposing the

user inputs “Blood Donation Student.” The input undergoes a tokenization

process where each term represents t in Table 5. The term frequency of each

term is calculated using Equation 5. After getting the term frequency, the TF-

IDF value of each search term is calculated (Equation 3). Finally, the search

length is attained using Equation 6.

Table 5. Term frequency result

Term T Blood Donation Student

TF (term) 0.33 0.33 0.33

Search TF-IDF

(term)
1.3219 2.3219 1.737

Search Length 3.186831254

TF(terms) =
No. of times term t appears in the search query

Total number of terms in the search query

 = √∑ TF-ID (t)2
t∈s

After calculating the actual search length, the system uses the document

length, the TF-IDF values of the document indices and TF-IDF values of the

search terms to compute each document’s score relative to the search terms,

using the cosine similarity measure (Equation 7). The higher the cosine

similarity value, the higher is the relevance of the document to the search

M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

28

(7)

terms. Table 6 shows a sample result of TF-IDF, document length and cosine

similarity computation of five documents. These documents are ranked based

on the cosine similarity.

Table 6. TF-IDF, document length and cosine similarity scores

Cosine similarity (document, search)=
TF-IDF (term, document) × TF-IDF(term, search)

documentLength (document) × searchLength (search)

Before the system retrieves the documents with a TF-IDF score greater than

0, the system also checks if the search terms exist in the document as a phrase.

Table 7 shows a sample result after checking whether the documents contain

the search word “Blood Donation Student”. In this example, only 2-7-15

Voluntary Blood Donation 2015.jpg has a phrase that matches the search

phrase. 2-7-15 Voluntary Blood Donation 2015.jpg will have higher relevance

in the document ranking. To do this, the final TF-IDF score of 2-7-15

Voluntary Blood Donation 2015.jpg is added with 1, resulting in a TF-IDF

value of 1.216681766.

After calculating the TF-IDF scores of each document, the system sorts the

values in descending order. This results in 2-7-15 Voluntary Blood Donation

2015.jpg as the most relevant. Figure 4 displays the search result.

Documents
TF-IDF

Document

length

Cosine

similarity

value Blood Donation Student

2-7-15

Voluntary

Blood Donation

2015.jpg

5.28771238 4.64385619 0 25.73779761 0.216681766

06-09-15

Appointments.

jpg

0 0 1.736965594 24.39067252 0.038815

06-15-15

Appointments.

jpg

0 0 0 30.43764674 0

06-29-15

Excuse of CAS

Students.jpg

0 0 3.473931188 23.5164332 0.080515948

08-14-15

Meeting of

University Days

and

Intramurals.jpg

0 0 0 24.11034345 0

M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

29

Table 7. Search phrases result

Documents

Search phrases

“Blood

donation”

“Donation

student”

“Blood

donation

student”

2-7-15 Voluntary Blood Donation 2015.jpg 1 0 0

06-09-15 Appointments.jpg 0 0 0

06-15-15 Appointments.jpg 0 0 0

06-29-15 Excuse of CAS Students.jpg 0 0 0

08-14-15 Meeting of University Days and

Intramurals.jpg
0 0 0

Figure 4. Document search and retrieval result

3. Results and Discussion

3.1 User Interface

The succeeding sections illustrate the different user interfaces interacted by

the user when navigating through Docudile. For the user to access the

documents uncompromisingly, the files are saved in cloud storage by using

Dropbox. At the registration phase, the user needs to allow the system to sync

the documents to the cloud. Clicking the button shown in Figure 5 redirects

M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

30

the user to the authentication page of Dropbox, asking permission if the system

can access the user’s Dropbox account to manage documents.

Figure 5. Cloud authentication

Figure 6 displays the user’s information such as name, email address and

organization to where the user belongs. The information shown is merely for

demonstration purposes; it does not reflect any official organization. Figure 6

also presents the number of documents stored and its storage cloud size.

Figure 6. Basic information

Figure 7 serves as the uploading area of the user. The user can either click the

upload area or drag and drop scanned documents to the upload panel. The

middle portion of Figure 7 has been magnified to clearly illustrate the different

statuses of the files during and after uploading. The status could be pending,

processing and complete. The user knows if the uploading is complete when

the file path of the scanned document is displayed.

M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

31

Figure 7. Upload page

Figure 8 is the main page shown to the user once the user has successfully

logged in to the system. The document viewer page shows the different folders

containing the documents uploaded directly to the system and those

documents synced into the user’s Dropbox account. The leftmost pane shows

a tree view, which serves as the hierarchical structure or the directory structure

of document storage. The user can navigate through it by clicking the expand-

and-collapse icons of the folders. Additionally, the system also provides

functionalities like downloading and deletion of documents.

Figure 8. Document viewer page

Figure 9 shows a sample of search results. In this example, the user is looking

for an excuse letter from students in a particular department. The user can

search the documents by entering keywords or terms associated with the

M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

32

documents. The left side shows the search result while the right-side pane

displays the preview of the selected document.

Figure 9. Search result

3.2 Accuracy Testing

The accuracy testing focused on the correctness of the generated hierarchical

structure and the search result. The extracted information and the result of the

classification dictate the identification of the hierarchical structure of the

document. Any failure in the aforementioned process results in missing details

or unclassified documents.

3.2.1 Rule-based Pattern Recognition

There were 198 scanned memos, 172 scanned letters and 30 unclassified

documents in the form of images. They were randomly selected and shuffled

in every test. Each test contained memos, letters and unclassified ones. As

shown in Table 8, there were 196 letters classified as letters, 165 memos as

memos, and 30 unclassified documents as unclassified. However, two letters

and seven memos were unclassified. Upon inspection of these documents,

stamps were seen on the heading part of the document, which disrupted the

OCR result and caused the system not to detect the expected structure.

Exposure to dirt also makes the scanned image blurry. There was no problem

with the unclassified documents since documents that did not follow the

hierarchical structure defined by the system were automatically labeled as

unclassified. Some unclassified documents contained a title and a table only.

However, some of them were supporting documents to memos and letters.

Getting the average of the accuracy result of the letter, memo and unclassified

M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

33

documents, the system yielded an accuracy test result of 98% in classifying

the documents based on the rule-based pattern recognition.

Table 8. Rule-based pattern recognition accuracy test result

T
ru

e
L

ab
el

 Predicted label

 Letter memo Unclassified

Letter 196 (99%) 0 2 (1%)

Memo 0 165 (96%) 7 (4%)

Unclassified 0 0 30 (100%)

The study also conducted accuracy testing with Naïve Bayes Classifier and

Support Vector Machine (SVM). These are two known machine learning

(ML) algorithms that can classify documents. In this case, the hierarchical

structure’s generation was ignored since these two ML algorithms’ goal was

to classify whether a document was a letter or memo based on its content only.

The study utilized the scikit-learn library in Python to do the classification.

Figures 10 and 11 show the sample code conducted for both ML algorithms.

The 70-30 rule was used to split the dataset of 198 scanned memos, 172

scanned letters and 30 unclassified documents. The splitting of the dataset was

not used in the rule-based pattern recognition since the method only needed

the predefined rules to classify the documents. The skipping of the training

process hastened the overall process of this study, which is an advantage of

the rule-based pattern recognition. The accuracy results of the Naïve Bayes

Classifier and SVM were 78 and 86%, respectively (Figures 10 and 11). From

these results, it can be inferred that the rule-based pattern recognition classifies

better than these two ML algorithms. The content of the documents, which

was the bases of training and testing for both ML algorithms, was not enough

to classify these documents. Since these documents were almost identical

except for their structure, the use of the rule-based pattern in this study is

highly recommended.

Figure 10. Naïve Bayes Classifier accuracy result

M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

34

Figure 11. SVM accuracy result

3.2.2 Document Search and Retrieval

The sample search inputs for accuracy checking of document search and

retrieval are shown in Table 9. Different inputs were taken into consideration

including, but not limited to, filename, segment of the filename and phrase or

word from a document. The expected and actual results are scanned

documents with file extensions png, jpg, and jpeg files. Because of the

dynamic input, the actual result may not be necessary the first document that

appears in the search result. However, all of the expected documents are

ranked higher than those documents that are irrelevant.

Table 10 exhibits the precision and recall of 400 documents stored in

Docudile. These documents have already undergone the TF-IDF process

during upload, which has been mentioned in the methodology section. The

result of the TF-IDF process was saved in the database for fast search and

retrieval of documents. Every time a new document is added to the system,

the system updates the TF-IDF values stored in the database. The search

keywords were calculated on the fly to find the relevant documents using

cosine similarity. There were two test cases conducted in this study as shown

in Table 10. T1 used the filename or substring of the filename as search

keywords. T2 utilized the content of the document as search keywords. For

each search keyword, a maximum of 10 documents was displayed to the user.

Table 10 displays the search and retrieval result with precision, recall and F1

scores. There were 40 search keywords for every test case. Every search input

returned relevant documents, non-relevant documents and total relevant

documents stored in the database. Precision was used to get the ratio of the

relevant returned documents to the total returned documents. The recall was

utilized to get the ratio of the relevant returned documents to the total relevant

documents stored in the database.

M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

35

Table 9. Accuracy test result of document search and retrieval

Test no. Search keywords Expected Actual Result

T1
CAS Student World of

Music 2015

2-7-15 CAS

Student 2015.jpg

2-7-15 CAS

Student 2015.jpg
Correct

T2
Enrollment 2nd

semester 2021

Enrollment

Duty.png

Enrollment

Duty.png
Correct

T3
2nd Sem 2020 class

roster

Class of 2nd Sem

2020.jpeg

Class of 2nd Sem

2020.jpeg
Correct

T4
Grading System of

CICCT
Grades.png Grades.png Correct

T5
CS Elec1 Change of

Grade

Change of

Grade.png

Change of

Grade.png
Correct

T6
Business Permit of

Startup 2018

06-15-15

Appointment.jpeg

06-15-15

Appointment.jpeg
Correct

T7

Demonstration on

programming

simulation

Business.jpg Business.jpg Correct

T8
Letter to the Vice-

President 2010

Letter to the Vice-

President.jpg

Letter to the Vice-

President.jpg
Correct

T9
Curriculum Vitae

Marisa Buctuanon
CV.jpeg CV.jpeg Correct

T10
Office of the President

2020

Letter from the

President.jpg

Letter from the

President.jpg
Correct

T11

Important Letter

corresponding to the

health protocol of USJ-

R

A response

letter.jpeg

A response

letter.jpeg
Correct

T12

Memorandum

Agreement with

Google

12-2-18 Meeting

with Google.png

12-2-18 Meeting

with Google.png
Correct

T13
Trust Fund for the

school year 2019-2020
Fund Release.jpg Fund Release.jpg Correct

T14
Handbook Manual for

Employees

06-2020 Handbook

for Employees.jpg

06-2020

Handbook for

Employees.jpg

Correct

T15
Financial Statement of

CICCT

2020 Financial

Statement.png

2020 Financial

Statement.png
Correct

T16
Vacation Leave of

John Leeroy Gadiane

IT Department File

Leave.jpg

IT Department

File Leave.jpg
Correct

T17
Accenture Online Job

Recruitment
OJR.jpeg OJR.jpeg Correct

T18

Non-disclosure

Agreement with

RITTC

Non-disclosure

Agreement with

Company A.jpg

Non-disclosure

Agreement with

Company A.jpg

Correct

T19
Employee Training for

Research

10-1-17

Training.jpg

10-1-17

Training.jpg
Correct

T20

Discussion with the

Attorneys and the

members of the panel

08-14-15 Meeting

for Tuition Fee

Increase and Other

Matters. jpg

08-14-15 Meeting

for Tuition Fee

Increase and Other

Matters. jpg

Correct

To compute the precision, recall and F1 scores of the result, Equations 8, 9

and 10 were used, respectively. F1 score determined the accuracy of the TF-

M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

36

(8)

(9)

(10)

IDF implementation of the system. F1 score is more useful when there is an

uneven document vis-à-vis the search input. On average, the system was able

to return 89% of the relevant documents. The major contributing factor to this

was the number of relevant documents returned by the system. Since the

system displays only the top 10 relevant documents, not all relevant

documents are shown to the user.

Table 10. TF-IDF precision and recall summary

Test no.

No. of

search

keywords

Total

relevant

documents

returned

Total Non-

relevant

documents

returned

Total

relevant

documents

in database

Precision Recall
F1

Score

T1 40 400 0 504 100% 84% 91%

T2 40 72 28 496 93% 81% 86%

Average 97% 82% 89%

Precision =
Relevant documents returned

Relevant document returned + Non-relevant documents returned

Recall =
Relevant documents returned

Total relevant documents in the database

F1 Score=
2 × Precision × Recall

Precision + Recall

3.3 Performance Testing

Testing the performance of the main features of the system really matters for

the user to ensure its efficiency. Table 11 shows the average user time, CPU

time and system time. User time is the time spent by the user navigating

through the feature. CPU time is the amount of time executed to perform the

instructions for the feature. System time is the operating system’s time for

running or executing the feature. There were 10, 25 and 50 documents fed for

each feature. Each time spent per batch of documents is recorded. Table 11

presents the average result of the testing.

Uploading a new document to the system undergoes different processes, and

it depends on the machine where the system is running. Since OCR is not CPU

intensive but internet dependent, the results may vary depending on the

connection speed. The time it took for the OCR API to recognize each

character in the document is acceptable – an average of 0.51 s. Although CPU

time and system time are important to the overall process, the most relevant

result here is the user time. Users do not focus on the background process.

Rather, they anticipate that the system gives a fast result. Moreover, the factor

M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

37

affecting the performance of the upload was the pre-processing of the text

from OCR since the libraries used are taking some system resources. Syncing

to Dropbox would highly rely on the internet connection. The current ping

from the host machine to Dropbox was 204 ms on average with the highest

and lowest speed of 209 and 202 ms, respectively. The upload speed was 0.49

Mbps, which was taken from a speed test website.

Table 11. Performance testing result

Feature tested
Average user time

(s/document)

Average CPU time

(s/document)

Average system

time (s/document)

Optical character

recognition

performance

0.51 0.65 0.15

Upload document

performance
41.19 43.06 1.88

Sync to Dropbox 0.02 0.02 0.001

4. Conclusion and Recommendation

The study aimed to increase an organization’s workflow by lessening the

amount of time locating documents; hence, a system was developed. With the

help of the rule-based pattern recognition, it is possible to generate a

hierarchical structure to store the documents and classify them into letters,

memos, or unclassified ones. The system yielded 98% accuracy for document

classification. Compared with Naïve Bayes Classifier and SVM, the result of

the feature similarity based on the rule-based pattern recognition was way

better than the said two ML algorithms. On the other hand, the accuracy test

of TF-IDF in finding and retrieving searched documents yielded 89% due to

the system’s user interface. However, this concern can be addressed by

allowing more than 10 results to display to the user. The results of the

performance testing found that the system took time to complete the whole

process – from uploading the scanned document, generating the hierarchical

structure up to cloud syncing. The system undergoes several processes that

need numerous resources, and some of which were system intensive and

internet dependent. Hence, if internet connectivity is unavailable or

intermittent, the system offers local storage to augment the on-the-fly

uploading of documents. The incorporation of the rule-based pattern

recognition in classifying documents based on structure and storing them

M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

38

automatically is one of the reasons why this algorithm can offer means for

document classification and storage. Although supporting documents are

expected not to be classified, future works should integrate other types of

documents including certificates and research in the rule-based pattern

recognition process.

5. References

Al-Sabahi, K., Zuping, Z., & Nadher, M. (2018). A hierarchical structured self-

attentive model for extractive document summarization (HSSAS). IEEE Access, 6, 1-

8. https://doi.org/10.1109/ACCESS.2018.2829199

Babic, B., Nesic, N., & Miljković, Z. (2008). A review of automated feature

recognition with rule-based pattern recognition. Computers in Industry, 59(4), 321-

337. https://doi.org/10.1016/j.compind.2007.09.001

Briiggemann-Klein, A. (1993). Regular expressions into finite automata. Theoretical

Computer Science, 120, 197-213.

Cloud OCR SDK. (n.d.). Retrieved from https://github.com/abbyy/ocrsdk.com

Chagheri, S., Calabretto, S., Roussey, C., & Dumoulin, C. (2011). Document

classification combining structure and content. Proceedings of the 3rd International
Conference on Enterprise Information Systems (ICEIS), Beijing, China, 8-11.

Dengel, A., & Dubiel, F. (1995). Clustering and classification of document structure –

A machine learning approach. Proceedings of the 3rd International Conference on
Document Analysis and Recognition, Montreal, Quebec, Canada, 587-591.

Dourish, P., Edwards, W., LaMarca, A., Lamping, J., Petersen, K., Salisbury, M.,

Terry, D.B., & Thornton, J. (2000). Extending document management systems with
user-specific active properties. ACM Transactions on Information Systems (TOIS),

18(2), 140-170. https://doi.org/10.1145/348751.348758

Dropbox for Java Developers. (n.d.). Retrieved from https://www.dropbox.com/develo
pers/documentation/java

Extended Java WordNet Library. (n.d.). Retrieved from https://github.com/extjwnl/

extjwnl

García, S., Luengo, J., & Herrera, F. (2015). Data preprocessing in data mining.

Switzerland: Springer International Publishing.

Goller, C., Löning, J., Will, T., & Wolff, W. (2000). Automatic document

classification: A thorough evaluation of various methods. IEEE Intelligent Systems,

14, 145-162.

https://www.dropbox.com/develo
https://github.com/extjwnl/

M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39

39

Gulin, V., & Frolov, A. (2016). On the classification of text documents taking into
account their structural features. Journal of Computer and Systems Sciences

International, 55, 394-403. https://doi.org/10.1134/S1064230716030102

Henderi, Aini, Q., Srenggini, A., & Khoirunisa, A. (2020). Rule based expert system
for supporting assessment of learning outcomes. International Journal of Advanced

Trends in Computer Science and Engineering, 9(1.2), 266-271. https://doi.org/10.305

34/ijatcse/2020/3991.22020

Lee, M., So, S., & Oh, H. (2016). Synthesizing regular expressions from examples for

introductory automata assignments. New York, NY, USA: Association for Computing

Machinery.

Power, R., Scott, D., & Bouayad-Agh, N. (2003). Document structure. Computational

Linguistics, 29(2), 211-260. https://doi.org/10.1162/089120103322145315

Ramos, J. (2003). Using TF-IDF to determine word relevance in document queries.
Proceedings of the First Instructional Conference on Machine Learning, 133-142.

Sarawagi, S. (2007). Information extraction. Foundations and Trends in Databases,

1(3), 261-377. https://doi.org/10.1561/1900000003

Shaw, F., & Fifer, R. (1986). An evaluation of five pc-based expert system shells.

Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a197915.pdf

Shin, C., Doermann, D., & Rosenf, A. (2001). Classification of document pages using

structure-based features. International Journal on Document Analysis and Recognition,

3, 232-247. https://doi.org/10.1007/PL00013566

Singh, J., & Gupta, V. (2017). A systematic review of text stemming techniques.

Artificial Intelligence Review, 48, 157-217. https://doi.org/10.1007/s10462-016-9498-

2

Stede, M., & Suriyawongkul, A. (2010). Identifying logical structure and content

structure in loosely-structured documents. In A. Witt & D. Metzing (Eds.), Linguistic

modeling of information and markup languages (pp. 81-96). Switzerland: Springer

Nature.

https://doi.org/10.305

