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Abstract 
 

Numerous documents in the form of emails, business letters, reports and transactions 

among others are created and received by many organizations. Thus, organizing them 

is a challenge. There are various ways to organize documents such as according to the 

header, sender, or content. However, following the rules in organizing documents 

might not be consistent with organizations like schools as this may vary from one 

person to another and is prone to human errors. The manual organization also 

requires a lot of time and may lead to difficulty in finding the documents’ location. 

Thus, this study aimed to develop an intelligent document organizing system named 

Docudile. It is a self-organizing system that classifies each document and seamlessly 

places them in the computer directory using the rule-based pattern recognition for 

quick and accurate locating of documents. A cloud-based document management 

system with storage that syncs documents from local storage to cloud server was also 

developed to mitigate the inaccessibility of the documents when they are accessed from 

a remote area. Term Frequency-Inverse Document Frequency (TF-IDF) was used to 

retrieve the documents. Results showed that the system yielded 98 and 89% accuracy 

in classifying and retrieving the documents, respectively, based on the rule-based 

pattern recognition. Compared with Naïve Bayes Classifier and support vector 

machine accuracy results, it was found that using cosine feature similarity of the rule-

based pattern recognition obtained a better accuracy in classifying school-related 

documents. Furthermore, this study recommends that supporting documents should go 

with the main document during the classification. 

 

Keywords: automatic document classification, cloud-based document management 

system, document structure classification, rule-based pattern recognition 
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1. Introduction 

 

Documents serve as means of communication between and within 

organizations. They provide a way for organizations to give official 

statements, standardize business processes and show business progress, proofs 

of a transaction and transparency reports to name a few. A document is the 

lifeblood of every business operation. However, documents tend to go missing 

or are hard to find when there is no rule to follow to organize them in digital 

storage. This kind of document mismanagement may result in business failure. 

Integrating automatic document classification (ADC) on a file management 

system would increase productivity between organizations and decrease 

mismanagement risks (Goller et al., 2000). It labels documents based on their 

content vis-à-vis to one or more predefined categories (Chagheri et al., 2011). 

The document’s properties, also known as metadata such as title, author, 

name, subject and keywords that identify its topic or content, reflect its 

categorizations and use (Dourish et al., 2000). Augmenting a rule-based 

framework for document structure classification that uses the document 

properties enables the provision of an improved ADC. Another bottleneck of 

document retrieval is when the document location is inaccessible at any time 

of the day. The document might be stored somewhere else, and when there is 

an urgent need to retrieve it, nothing can be done. Hence, finding a pattern to 

follow in automating the document categorization and retrieval in online 

storage was the direction of the present study.  

 

The document structure is defined as the organization of a document into 

graphical constituents like sections, paragraphs, sentences, bulleted lists and 

figures (Power et al., 2003). This structure is the layout of a document 

containing a significant amount of information that can be used to classify it 

by type (Shin et al., 2001; Gulin and Frolov, 2016). Classifying the document 

based on its structure has given interest to many researchers. Chagheri et al. 

(2011) proposed an approach using structural elements of the document and 

not just its content. The document structure used the tags of the XML 

document. They utilized support vector machines (SVM) algorithm to classify 

the document. However, their study focused only on XML documents and not 

on scanned documents, which are commonly used by many organizations. 

Hence, the scanned document was emphasized in this study. Similar to the 

present work is the study of Dengel and Dubiel (1995), which described a 

system that is capable of learning the presentation of business documents’ 

logical structures. Their system clusters the documents into structural concepts 

and induces a concept of hierarchy taken as a source for classifying future 
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input. The study of Al-Sabahi et al. (2018) introduced a different way of 

creating the concept of hierarchy that is applied for logical labeling. 

 

In the present study, rule-based pattern recognition has been introduced, which 

simplifies the classification process. The documents did not undergo a training 

process as this study utilized the structure of the document to create a rule-

based pattern recognition system. Thus, it eliminated the overhead costs.  

 

The rule-based approach, which was employed in this study, has a knowledge 

part represented by production rules which consist of IF condition and THEN 

action or conclusion (Shaw and Fifer, 1986; Henderi et al., 2020). With the 

rule-based approach added on pattern recognition, these rules must provide 

uniqueness of the form feature definition of documents. If set up correctly, an 

accurate and thorough form feature identification is achieved (Babic et al., 

2008). In pattern recognition, numerous systems differ from where a form 

feature or a specific pattern is identified. One of which is syntactic pattern 

recognition, wherein a set of a grammar containing some rules defines a 

particular pattern (Babic et al., 2008). In the early 1960s and next two decades, 

a syntactic approach was successfully applied by Flasiński and Jurek (2014) 

for structurally-oriented recognition (SOR) problems. This proves that 

document structure classification – a type of SOR – can be solved through 

pattern recognition. However, this method has not been extensively explored. 

Most studies focused on document classification through the Bayesian 

approach, which ignores the document structure and concentrates more on the 

content of the document. 

 

This study aimed to show how a rule-based approach on pattern recognition is 

used to classify the document based on its logical and content structure. The 

logical structure is composed of the document’s heading and body sections. 

The content structure refers to the title, date and other functional zones of the 

document (Stede and Suriyawongkul, 2010). Also, this study exhibits a cloud-

based document management system (CDMC), where the documents in the 

form of images are stored in and retrieved from a cloud storage platform 

(CSP). Dropbox was utilized as the system’s CSP since it is fast syncing. That 

is to say, the system offers more than document classification and cloud 

storage. It can sync local documents to Dropbox and retrieve documents based 

on their content or filename. This study’s utilization of the result of a rule-

based pattern recognition to generate a directory structure contributes to the 

many uses of rule-based pattern recognition. This approach may be simple; 

however, it gives a practical way to properly store and easily retrieve 
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documents. This study also amplifies the reasons to use a rule-based pattern 

to classify school-related documents. 

 

 

 

2. Methodology 

 

Docudile is the name of the system developed in this study. It is made using 

Java Enterprise Edition, specifically, utilizing the Spring Framework and 

Hibernate Object/Relational Mapping (ORM). The framework enables the 

developer to program and configure the model without unnecessary ties to a 

specific deployment environment while ORM provides ease in defining and 

manipulating the database. Using the Dropbox SDK (Dropbox for Java 

Developers, n.d.), the system can access and manipulate the Dropbox account 

through user authentication. The system also integrates ABBYY® Cloud OCR 

SDK (Cloud OCR SDK, n.d.) for optical character recognition (OCR). 

 

This study had four major phases in incorporating a rule-based pattern 

recognition approach for document structure classification: 1) image to text 

conversion, 2) data preprocessing, 3) document structure generation and 4) 

directory structure generation. Each phase is discussed further in the 

succeeding sections. Additionally, managing the documents in the cloud, 

which includes the syncing of documents from local storage to the cloud 

server of Docudile and retrieving the document using Term Frequency-Inverse 

Document Frequency (TF-IDF), is likewise elaborated. 

 

2.1 Image to Text Conversion 

Although digitalizing documents is recommended nowadays, many 

organizations still produce hard copies of documents to communicate with 

other organizations and within their premises. To save them digitally as an 

image, the user needs to scan the document first and upload it to the system. 

Figure 1a shows a sample of a scanned document uploaded to the system. The 

image undergoes OCR to convert image to text. This is not yet the pattern 

recognition; this phase only allows the system to process the document in a 

text format instead of an image. 
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Figure 1. Sample output of the OCR API  

 

There are several options available for developers when using the API, namely 

setting the language for recognition, font style used and image source. Since 

most of the documents are in English, the language setting was set into this 

language format. Knowingly, most of the documents are captured using 

flatbed scanners. Therefore, the source was set to “scanner.” These settings 

are important because they aid the API in recognizing the documents 

correctly. The API returns the result in a single string format with only the 

carriage return and the new line as the separator between the lines. The system 

formats the result as shown in Figure 1b. 

 

2.2 Data Preprocessing 

 

Data preprocessing is a data mining technique that involves data cleaning, 

normalization, transformation and several other preparations to produce 

correct and useful data for further processing (García et al., 2015). In this 

phase, the OCR result undergoes removal of all characters that are identified 

as alphanumeric and whitespace. Removal of the occurrence of stop words 

then follows because these words are unrelated to the actual document. After 

which, the system identifies whether the words exist in the dictionary using 

Java WordNet Library (JWNL) (Extended Java WordNet Library, n.d.). 

Finally, stemming or acquiring the words’ base forms (Singh & Gupta, 2017) 

is then applied through the same library. The system calls 

stemWordwithWord, a method in JWNL that is responsible for returning the 

(a) (b) 
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stemmed equivalent of the word. Table 1 exhibits the data preprocessing result 

shown in Figure 1. For sample demonstration, the content of the body shown 

in this table is only from the first paragraph of the document. 

 

Table 1. Data preprocessing result 

 

Heading 

INSTITUTE OF THE NON-FORMAL EDUCATION AND COMMUNITY OUTREACH 

PROGRAM 

Date: February 5, 2015 

Dean, Department Office Heads 

Subject: Voluntary Blood Donation 2015 

Body 

inform good office University San Jose-Recoletos Institute Non-Formal 

Education Community Outreach Program (INFECOP) partnership 

Department Health conduct Voluntary Blood Donation 8:00 a.m. 

5:00 p.m. February 11-12, 2015, Main Lobby. 

 

The basis on what pattern to follow is the logical and content structure of the 

documents. It is observed that the heading part of the document contains vital 

information as to how the documents are stored physically or digitally. The 

heading structure of the documents in many organizations, particularly 

schools, is either <OFFICE, DATE, TO, [THRU], SUBJECT> or <OFFICE, 

DATE, SALUTATION>, which serves as rules in classifying the documents. 

To further understand how these rules are applied to the system, the document 

structure generation section provides the process. 

 

2.3 Document Structure Generation 

 

This phase is also considered the information extraction (IE) process of the 

system in which the automatic extraction of structured information from 

unstructured sources is done (Sarawagi, 2007). The system only extracts the 

essential information of the document such as date, sender, recipient and 

subject. 

 

2.3.1 Regular Expression  

 

To recognize the structure of the document and identify the tag of each line in 

the heading, the system uses regular expression (regex). Regex is a pattern that 

matches one or more strings of characters (Briiggemann-Klein, 1993; Lee et 

al., 2016). Regex was implemented to form a feature definition of a document 

and verify whether it has any match in the predefined pattern or rule. Table 2 

illustrates the result of the regex process undergone by the heading section of 
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the document. Here, the system evaluates each line’s tag as OFFICE, DATE, 

TO and SUBJECT. 

 
Table 2. Regular expression result 

 
Heading 

Text string Tag 

INSTITUTE OF THE NON-FORMAL 

EDUCATION AND COMMUNITY 

OUTREACH PROGRAM 

OFFICE 

Date: February 5, 2015 DATE 

Dean, Department Office Heads TO 

Subject: Voluntary Blood Donation 2015 SUBJECT 

 

Figure 2 displays the result done through the regex, where tags are labelled in 

each part of the heading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. Regular expression result 

 

Once the system recognizes the pattern of the document based on the result of 

the regular expression, the system then identifies whether the document is a 

memo, letter, or unclassified. 

 

2.3.2 Feature Similarity Computation 

 

The next process is to do feature similarity. In this study, feature similarity 

means finding how much a document is considered either a memo, letter, or 

unclassified using feature similarity computation. The IF-THEN rule-based 

pattern is applied to do the classification. If the document structure is 

<OFFICE, DATE, TO, [THRU], SUBJECT>, then the document is a memo. 

If the document contains <OFFICE, DATE, SALUTATION>, then it is 
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(1) Feature similarity 

classified as a letter. Again, these patterns are observed every time a memo or 

letter is written or received by a school organization. These two types of 

documents are the only focus of the IF-THEN rules since they are most 

commonly used in academic institutions. Any document having none of these 

rules is considered unclassified. Unclassified documents do not have logical 

and content structures, which can only contain images or tables. Further 

discussion on unclassified documents is presented in the directory structure 

generation section.  

 

Table 3 displays the result of feature similarity. The system employs Equation 

1 to compute the feature similarity of the document to the two predefined 

structures, which are <OFFICE, DATE, TO, [THRU], SUBJECT> for a 

memo and <OFFICE, DATE, SALUTATION> for a letter. The tag that is 

enclosed in the square bracket means optional. After computation, Table 3 

shows that the scanned document is classified as memo.  

 

= ∑ ti

n

i=1
 

 

where t denotes the tags generated from the document from i to n or the total number 

of tags. 

Table 3. Feature similarity result 

 

FS Tags 

MEMO = 4 OFFICE, DATE, TO, SUBJECT 

LETTER = 2 OFFICE, DATE 

 
2.4 Directory Structure Generation 

 

The document structure generation determines whether to generate a directory 

structure of the document or classify the document from the existing directory. 

If the directory structure of the document is already generated, the system 

traverses the said directory, where the document is then stored.  

 

The tags that were acquired earlier during regex are employed in this process. 

These tags are the bases to form the hierarchical structure of the documents. 

The hierarchical structure is also referred to as the directory structure of the 

documents. Figure 3 is the result of the generated directory structure of the 

document. 
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Figure 3. Hierarchical structure 

 

The unclassified documents, including, but not limited to certificates and 

research, are stored in the “UNCLASSIFIED” directory. They are unclassified 

since they do not contain the pattern for a memo or a letter. However, they are 

still stored which can be also be used for document search and retrieval 

operations. Furthermore, the system performs an additional set of operations 

to manage the documents. The succeeding sections present the syncing of 

documents from local storage to the cloud and retrieving them through TF-

IDF. 

 

2.5 Local to Cloud Storage 

 

The user can directly upload the documents to the cloud. However, if the 

internet is slow or fluctuating, uploading them to the cloud takes time. To 

resolve this, the system has the capability of syncing the local documents to 

the cloud in the background. Using Docudile, the user can upload the scanned 

documents and allow the system to store them locally in the meantime. Once 

the machine has an internet connection, the system performs the syncing of 

documents to the user’s Dropbox account. By default, the system syncs the 

documents every 5 min using a jQuery script. The user can also manually 

trigger the syncing. The jQuery script has a setTimeout method, which calls a 

function every 5 s to check if it is already time to sync the documents to the 

cloud. The system acquires a list of all directories and documents with their 

corresponding metadata from the cloud storage. The metadata includes the 

storage path, file name, upload date and username of the uploader. Since 

multiple users can use one cloud account in an organization’s particular office, 

the system logs this information for future inventory. However, the system can 

only retrieve all directories and metadata during the scheduled time for 

syncing. Beyond that, the system does not retrieve the local changes. The 
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(2) 

(3) 

system compares its own saved list with the current state of the local storage 

when syncing occurs. The system deletes any document in the cloud that are 

unfound in the local storage. It also overwrites the documents in the cloud with 

a timestamp that is behind the timestamp of the equivalent document in the 

local storage. Afterward, the system only syncs documents that are not present 

in the cloud.  This optimized process helps the system avoid redundancy and 

the heavy load in document syncing.  

 

2.6 Document Search and Retrieval 

 

The system can also handle the document management system’s default 

operations like the store, replace and delete. These functionalities were taken 

care of by the default libraries bundled with Java and the I/O library of 

Apache. One of the most relevant features of this system is the document 

search and retrieval functionality. The study utilized the TF-IDF algorithm to 

capture the need for easy and fast retrieval of documents upon searching. TF-

IDF shows the relevance of the search keys to the documents. It calculates the 

values for each word in a document through an inverse proportion of the word 

frequency in a document to the percentage of each word that appears (Ramos, 

2003). Here, the search and retrieval do not only find a document based on its 

filename but also its contents. These features involve two phases: generating 

of document index and actual searching of the document. The first phase 

happens during the uploading of the document. This computes the IDF values 

of each index. The TF (term, document) is computed by counting the number 

of times the term appears in a document. After calculating each index’s IDF 

values using Equation 2 and its TF, the TF-IDF values are then obtained using 

Equation 3.  Table 4 illustrates the sample bag of words present in the 

database, their IDF values, term frequency values, and TF-IDF values. The 

TF-IDF values of each index are stored in the database to optimize the search 

process.  After calculating the TF-IDF values, the document length is also 

calculated (Equation 4) since it plays a vital role in the search process.   

 

IDF(term) = log
e

(
Total number of documents

Number of documents with term in it
)      

 

TF-IDF(term, document) = TF(term, document) × IDF(term)         
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Document length (document) (4) 

(5) 

Search length (search) (6) 

Table 4. TF-IDF calculation 

Term T Blood University Donation Student Emergency 

IDF 

(term) 

3.9657 0.3945 6.9657 5.211 1.3219 

      

TF  

(term, 

document) 

1 1 1 0 2 

      

TF-IDF 

(term, 

document) 

3.9657 0.3945 6.69657 0 2.6438 

 

              = √∑ TF-IDF(term, document)
2

t∈d

 

 

The next phase is for the user to look for a particular document. Supposing the 

user inputs “Blood Donation Student.” The input undergoes a tokenization 

process where each term represents t in Table 5. The term frequency of each 

term is calculated using Equation 5.  After getting the term frequency, the TF-

IDF value of each search term is calculated (Equation 3). Finally, the search 

length is attained using Equation 6. 

Table 5. Term frequency result 

Term T Blood Donation Student 

TF (term) 0.33 0.33 0.33 

    

Search TF-IDF 

(term) 
1.3219 2.3219 1.737 

    

Search Length 3.186831254 

 

TF(terms) = 
No. of times term t appears in the search query

Total number of terms in the search query
 

                                                                               = √∑ TF-ID (t)2
t∈s   

 

After calculating the actual search length, the system uses the document 

length, the TF-IDF values of the document indices and TF-IDF values of the 

search terms to compute each document’s score relative to the search terms, 

using the cosine similarity measure (Equation 7). The higher the cosine 

similarity value, the higher is the relevance of the document to the search 
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(7) 

terms. Table 6 shows a sample result of TF-IDF, document length and cosine 

similarity computation of five documents. These documents are ranked based 

on the cosine similarity.  

 

Table 6. TF-IDF, document length and cosine similarity scores 

 

 

Cosine similarity (document, search)= 
TF-IDF (term, document) × TF-IDF(term, search)

documentLength (document) × searchLength (search)
                       

 

Before the system retrieves the documents with a TF-IDF score greater than 

0, the system also checks if the search terms exist in the document as a phrase. 

 

Table 7 shows a sample result after checking whether the documents contain 

the search word “Blood Donation Student”. In this example, only 2-7-15 

Voluntary Blood Donation 2015.jpg has a phrase that matches the search 

phrase. 2-7-15 Voluntary Blood Donation 2015.jpg will have higher relevance 

in the document ranking. To do this, the final TF-IDF score of 2-7-15 

Voluntary Blood Donation 2015.jpg is added with 1, resulting in a TF-IDF 

value of 1.216681766. 

 

After calculating the TF-IDF scores of each document, the system sorts the 

values in descending order. This results in 2-7-15 Voluntary Blood Donation 

2015.jpg as the most relevant. Figure 4 displays the search result. 

 

Documents 
TF-IDF 

Document 

length 

Cosine 

similarity 

value Blood Donation Student 

2-7-15 

Voluntary 

Blood Donation 

2015.jpg 

5.28771238 4.64385619 0 25.73779761 0.216681766 

06-09-15 

Appointments. 

jpg 

0 0 1.736965594 24.39067252 0.038815 

06-15-15 

Appointments. 

jpg 

0 0 0 30.43764674 0 

06-29-15 

Excuse of CAS 

Students.jpg 

0 0 3.473931188 23.5164332 0.080515948 

08-14-15 

Meeting of 

University Days 

and 

Intramurals.jpg 

0 0 0 24.11034345 0 
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Table 7. Search phrases result 

 

Documents 

Search phrases 

“Blood 

donation” 

“Donation 

student” 

“Blood 

donation 

student” 

2-7-15 Voluntary Blood Donation 2015.jpg 1 0 0 

06-09-15 Appointments.jpg 0 0 0 

06-15-15 Appointments.jpg 0 0 0 

06-29-15 Excuse of CAS Students.jpg 0 0 0 

08-14-15 Meeting of University Days and 

Intramurals.jpg 
0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Document search and retrieval result 

 

 

 

3. Results and Discussion 

 

3.1 User Interface 

 

The succeeding sections illustrate the different user interfaces interacted by 

the user when navigating through Docudile. For the user to access the 

documents uncompromisingly, the files are saved in cloud storage by using 

Dropbox. At the registration phase, the user needs to allow the system to sync 

the documents to the cloud. Clicking the button shown in Figure 5 redirects 
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the user to the authentication page of Dropbox, asking permission if the system 

can access the user’s Dropbox account to manage documents. 

 

 

Figure 5. Cloud authentication 

 

Figure 6 displays the user’s information such as name, email address and 

organization to where the user belongs. The information shown is merely for 

demonstration purposes; it does not reflect any official organization. Figure 6 

also presents the number of documents stored and its storage cloud size. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6. Basic information 

 

Figure 7 serves as the uploading area of the user. The user can either click the 

upload area or drag and drop scanned documents to the upload panel. The 

middle portion of Figure 7 has been magnified to clearly illustrate the different 

statuses of the files during and after uploading.  The status could be pending, 

processing and complete. The user knows if the uploading is complete when 

the file path of the scanned document is displayed. 
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Figure 7. Upload page 

 

Figure 8 is the main page shown to the user once the user has successfully 

logged in to the system. The document viewer page shows the different folders 

containing the documents uploaded directly to the system and those 

documents synced into the user’s Dropbox account. The leftmost pane shows 

a tree view, which serves as the hierarchical structure or the directory structure 

of document storage. The user can navigate through it by clicking the expand-

and-collapse icons of the folders. Additionally, the system also provides 

functionalities like downloading and deletion of documents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8. Document viewer page 
 

Figure 9 shows a sample of search results. In this example, the user is looking 

for an excuse letter from students in a particular department. The user can 

search the documents by entering keywords or terms associated with the 
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documents. The left side shows the search result while the right-side pane 

displays the preview of the selected document. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9. Search result 

 

3.2 Accuracy Testing 

 

The accuracy testing focused on the correctness of the generated hierarchical 

structure and the search result. The extracted information and the result of the 

classification dictate the identification of the hierarchical structure of the 

document. Any failure in the aforementioned process results in missing details 

or unclassified documents.  

 

3.2.1 Rule-based Pattern Recognition 

 

There were 198 scanned memos, 172 scanned letters and 30 unclassified 

documents in the form of images. They were randomly selected and shuffled 

in every test. Each test contained memos, letters and unclassified ones. As 

shown in Table 8, there were 196 letters classified as letters, 165 memos as 

memos, and 30 unclassified documents as unclassified. However, two letters 

and seven memos were unclassified. Upon inspection of these documents, 

stamps were seen on the heading part of the document, which disrupted the 

OCR result and caused the system not to detect the expected structure. 

Exposure to dirt also makes the scanned image blurry. There was no problem 

with the unclassified documents since documents that did not follow the 

hierarchical structure defined by the system were automatically labeled as 

unclassified. Some unclassified documents contained a title and a table only. 

However, some of them were supporting documents to memos and letters. 

Getting the average of the accuracy result of the letter, memo and unclassified 



M. M. Buctuanon et al. / Mindanao Journal of Science and Technology Vol. 19 (1) (2021) 17-39 

33 

 

documents, the system yielded an accuracy test result of 98% in classifying 

the documents based on the rule-based pattern recognition. 
 

Table 8. Rule-based pattern recognition accuracy test result 

 

T
ru

e 
L

ab
el

 

                                     Predicted label 

 Letter memo Unclassified 

Letter 196 (99%) 0 2 (1%) 

    

Memo 0 165 (96%) 7 (4%) 

    

Unclassified 0 0 30 (100%) 

 

The study also conducted accuracy testing with Naïve Bayes Classifier and 

Support Vector Machine (SVM). These are two known machine learning 

(ML) algorithms that can classify documents. In this case, the hierarchical 

structure’s generation was ignored since these two ML algorithms’ goal was 

to classify whether a document was a letter or memo based on its content only. 

The study utilized the scikit-learn library in Python to do the classification. 

Figures 10 and 11 show the sample code conducted for both ML algorithms. 

The 70-30 rule was used to split the dataset of 198 scanned memos, 172 

scanned letters and 30 unclassified documents. The splitting of the dataset was 

not used in the rule-based pattern recognition since the method only needed 

the predefined rules to classify the documents. The skipping of the training 

process hastened the overall process of this study, which is an advantage of 

the rule-based pattern recognition. The accuracy results of the Naïve Bayes 

Classifier and SVM were 78 and 86%, respectively (Figures 10 and 11). From 

these results, it can be inferred that the rule-based pattern recognition classifies 

better than these two ML algorithms. The content of the documents, which 

was the bases of training and testing for both ML algorithms, was not enough 

to classify these documents. Since these documents were almost identical 

except for their structure, the use of the rule-based pattern in this study is 

highly recommended. 
 

 

 

 

 

 

 

 
 

 

Figure 10. Naïve Bayes Classifier accuracy result 
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Figure 11. SVM accuracy result 

 

3.2.2 Document Search and Retrieval 

 

The sample search inputs for accuracy checking of document search and 

retrieval are shown in Table 9. Different inputs were taken into consideration 

including, but not limited to, filename, segment of the filename and phrase or 

word from a document. The expected and actual results are scanned 

documents with file extensions png, jpg, and jpeg files. Because of the 

dynamic input, the actual result may not be necessary the first document that 

appears in the search result. However, all of the expected documents are 

ranked higher than those documents that are irrelevant. 

 

Table 10 exhibits the precision and recall of 400 documents stored in 

Docudile. These documents have already undergone the TF-IDF process 

during upload, which has been mentioned in the methodology section. The 

result of the TF-IDF process was saved in the database for fast search and 

retrieval of documents. Every time a new document is added to the system, 

the system updates the TF-IDF values stored in the database. The search 

keywords were calculated on the fly to find the relevant documents using 

cosine similarity. There were two test cases conducted in this study as shown 

in Table 10. T1 used the filename or substring of the filename as search 

keywords. T2 utilized the content of the document as search keywords. For 

each search keyword, a maximum of 10 documents was displayed to the user.  

Table 10 displays the search and retrieval result with precision, recall and F1 

scores. There were 40 search keywords for every test case. Every search input 

returned relevant documents, non-relevant documents and total relevant 

documents stored in the database. Precision was used to get the ratio of the 

relevant returned documents to the total returned documents. The recall was 

utilized to get the ratio of the relevant returned documents to the total relevant 

documents stored in the database.  
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Table 9. Accuracy test result of document search and retrieval 

 

Test no. Search keywords Expected Actual Result 

T1 
CAS Student World of 

Music 2015 

2-7-15 CAS 

Student 2015.jpg 

2-7-15 CAS 

Student 2015.jpg 
Correct 

T2 
Enrollment 2nd 

semester 2021 

Enrollment 

Duty.png 

Enrollment 

Duty.png 
Correct 

T3 
2nd Sem 2020 class 

roster 

Class of 2nd Sem 

2020.jpeg 

Class of 2nd Sem 

2020.jpeg 
Correct 

T4 
Grading System of 

CICCT 
Grades.png Grades.png Correct 

T5 
CS Elec1 Change of 

Grade 

Change of 

Grade.png 

Change of 

Grade.png 
Correct 

T6 
Business Permit of 

Startup 2018 

06-15-15 

Appointment.jpeg 

06-15-15 

Appointment.jpeg 
Correct 

T7 

Demonstration on 

programming 

simulation 

Business.jpg Business.jpg Correct 

T8 
Letter to the Vice-

President 2010 

Letter to the Vice-

President.jpg 

Letter to the Vice-

President.jpg 
Correct 

T9 
Curriculum Vitae 

Marisa Buctuanon 
CV.jpeg CV.jpeg Correct 

T10 
Office of the President 

2020 

Letter from the 

President.jpg 

Letter from the 

President.jpg 
Correct 

T11 

Important Letter 

corresponding to the 

health protocol of USJ-

R 

A response 

letter.jpeg 

A response 

letter.jpeg 
Correct 

T12 

Memorandum 

Agreement with 

Google  

12-2-18 Meeting 

with Google.png 

12-2-18 Meeting 

with Google.png 
Correct 

T13 
Trust Fund for the 

school year 2019-2020 
Fund Release.jpg Fund Release.jpg Correct 

T14 
Handbook Manual for 

Employees 

06-2020 Handbook 

for Employees.jpg 

06-2020 

Handbook for 

Employees.jpg 

Correct 

T15 
Financial Statement of 

CICCT 

2020 Financial 

Statement.png 

2020 Financial 

Statement.png 
Correct 

T16 
Vacation Leave of 

John Leeroy Gadiane 

IT Department File 

Leave.jpg 

IT Department 

File Leave.jpg 
Correct 

T17 
Accenture Online Job 

Recruitment  
OJR.jpeg OJR.jpeg Correct 

T18 

Non-disclosure 

Agreement with 

RITTC 

Non-disclosure 

Agreement with 

Company A.jpg 

Non-disclosure 

Agreement with 

Company A.jpg 

Correct 

T19 
Employee Training for 

Research 

10-1-17 

Training.jpg 

10-1-17 

Training.jpg 
Correct 

T20 

Discussion with the 

Attorneys and the 

members of the panel 

08-14-15 Meeting 

for Tuition Fee 

Increase and Other 

Matters. jpg 

08-14-15 Meeting 

for Tuition Fee 

Increase and Other 

Matters. jpg 

Correct 

 

To compute the precision, recall and F1 scores of the result, Equations 8, 9 

and 10 were used, respectively. F1 score determined the accuracy of the TF-
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(8) 

(9) 

(10) 

IDF implementation of the system. F1 score is more useful when there is an 

uneven document vis-à-vis the search input. On average, the system was able 

to return 89% of the relevant documents. The major contributing factor to this 

was the number of relevant documents returned by the system. Since the 

system displays only the top 10 relevant documents, not all relevant 

documents are shown to the user.  

 

Table 10. TF-IDF precision and recall summary 

 

Test no. 

No. of 

search 

keywords 

Total 

relevant 

documents 

returned 

Total Non-

relevant 

documents 

returned 

Total 

relevant 

documents 

in database 

Precision Recall 
F1 

Score 

T1 40 400 0 504 100% 84% 91% 

T2 40 72 28 496   93% 81% 86% 

Average       97% 82% 89% 

 

Precision = 
Relevant documents returned

Relevant document returned + Non-relevant documents returned
        

 

Recall =
Relevant documents returned

Total relevant documents in the database
         

 

F1 Score= 
2 × Precision × Recall

Precision + Recall
       

 

3.3 Performance Testing 

 

Testing the performance of the main features of the system really matters for 

the user to ensure its efficiency. Table 11 shows the average user time, CPU 

time and system time. User time is the time spent by the user navigating 

through the feature. CPU time is the amount of time executed to perform the 

instructions for the feature. System time is the operating system’s time for 

running or executing the feature. There were 10, 25 and 50 documents fed for 

each feature. Each time spent per batch of documents is recorded. Table 11 

presents the average result of the testing.  

 

Uploading a new document to the system undergoes different processes, and 

it depends on the machine where the system is running. Since OCR is not CPU 

intensive but internet dependent, the results may vary depending on the 

connection speed. The time it took for the OCR API to recognize each 

character in the document is acceptable – an average of 0.51 s. Although CPU 

time and system time are important to the overall process, the most relevant 

result here is the user time. Users do not focus on the background process. 

Rather, they anticipate that the system gives a fast result. Moreover, the factor 
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affecting the performance of the upload was the pre-processing of the text 

from OCR since the libraries used are taking some system resources. Syncing 

to Dropbox would highly rely on the internet connection. The current ping 

from the host machine to Dropbox was 204 ms on average with the highest 

and lowest speed of 209 and 202 ms, respectively. The upload speed was 0.49 

Mbps, which was taken from a speed test website. 

 

Table 11. Performance testing result 

 

Feature tested 
Average user time 

(s/document) 

Average CPU time 

(s/document) 

Average system 

time (s/document) 

Optical character 

recognition 

performance 

0.51 0.65 0.15 

Upload document 

performance 
41.19 43.06 1.88 

Sync to Dropbox 0.02 0.02  0.001 

 

 

 

4. Conclusion and Recommendation 

 

The study aimed to increase an organization’s workflow by lessening the 

amount of time locating documents; hence, a system was developed. With the 

help of the rule-based pattern recognition, it is possible to generate a 

hierarchical structure to store the documents and classify them into letters, 

memos, or unclassified ones. The system yielded 98% accuracy for document 

classification. Compared with Naïve Bayes Classifier and SVM, the result of 

the feature similarity based on the rule-based pattern recognition was way 

better than the said two ML algorithms. On the other hand, the accuracy test 

of TF-IDF in finding and retrieving searched documents yielded 89% due to 

the system’s user interface. However, this concern can be addressed by 

allowing more than 10 results to display to the user. The results of the 

performance testing found that the system took time to complete the whole 

process – from uploading the scanned document, generating the hierarchical 

structure up to cloud syncing. The system undergoes several processes that 

need numerous resources, and some of which were system intensive and 

internet dependent. Hence, if internet connectivity is unavailable or 

intermittent, the system offers local storage to augment the on-the-fly 

uploading of documents. The incorporation of the rule-based pattern 

recognition in classifying documents based on structure and storing them 
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automatically is one of the reasons why this algorithm can offer means for 

document classification and storage. Although supporting documents are 

expected not to be classified, future works should integrate other types of 

documents including certificates and research in the rule-based pattern 

recognition process. 
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