Mathematical Models Comparison for Illustration of Ruminal Degradability Curves of Citrus Pulp

Valiollah Palangi Department of Animal Science Ataturk University Erzurum, 25240 Turkey valiollah.palangi12@ogr.atauni.edu.tr

Date received: August 3, 2020 Revision accepted: December 4, 2020

Abstract

Food security is of global concern, which requires more attention on the identification of alternative sources. To combat and marginally prevent the issue, human edible grains can be excluded from the livestock feed. These grains can be substituted by nutrient rich process discards and by-products such as citrus pulp. In this study, four mathematical models were used to describe the ruminal disappearance of dry matter (DM) and crude protein (CP) of orange, grapefruit, lemon, and tangerine pulps: (I) non-lagged simple Mitscherlich or exponential, (II) lagged simple Mitscherlich or exponential, (III) Gompertz and (IV) generalized Mitscherlich. Results of DM and CP degradability characteristics showed that all the models fitted well ($r^2 > 0.95$) to the disappearance data and there were minor differences between the models in terms of statistical evaluations. Results also revealed that the models differed in the estimated parameters depending on the nature and structure of the model, and parameters included. Model III estimated negative values for the studied parameters making those biologically unacceptable. Only models I and II can be used for estimating the degradability of DM and CP of citrus pulps. Citrus pulps, containing a large amount of ruminal degradable fractions, can be used as feed source in ruminants.

Keywords: citrus pulps, model selection, nonlinear regression

1. Introduction

The use of agro-industrial by-products as animal feeds has been a matter of interest for the last few decades because of discarding or burning wastes or agro-industrial by-products causes potential air and water pollution problems (Palangi *et al.*, 2013). Food processing discards and or by-products have successfully been used to improve the sustainability of the dairy industry (Fessenden *et al.*, 2019). For instance, in 2016, 124.246 kt of citrus pulp was

produced that could have been utilized as feed and or feed additive (Food and Agriculture, 2017; Nogales-Mérida *et al.*, 2019).

Not only that citrus pulp is rich in nutrients, but it also contains soluble carbohydrates as well as readily digestible neutral detergent fiber (NDF) that could be used up by ruminal microbes as energy substrates (Ammerman and Henry, 1991; Miron *et al.*, 2002). This by-product has been previously used as high energy feed to boost the growth and lactation of cattle (Pang *et al.*, 2018; Karlsson *et al.*, 2020).

Generally, fermentation of feedstuff in ruminants is studied by in-vivo, in-situ and in-vitro techniques. In the one hand, in-situ technique (Dacron polyester), as a rather simple and an inexpensive method, has been used widely for estimating the ruminal nutrient degradation worldwide. On the other hand, with the nylon-bag technique, a rather complex method, potential degradability of feedstuffs and feed constituents as well as its rates of disappearance could be estimated (Taghizadeh *et al.*, 2008). In contrary to the above-mentioned techniques, dynamic digestion models not only would predict the nutritional value of the feed, microbial populations, and physiological status of livestock but could also facilitate investigating the digestion process limiting factors (Palangi and Macit, 2019). It is of note that digestion rate is the function of feed retention time in the digestive tract; thus, changes in the digestion process can be illustrated by dividing feed into (1) easily digested, (2) slowly digested and (3) indigestible part.

To date, various methods have been suggested for the estimation of quality proportions of feeds. Nonetheless, identifying digestible models and plotting their degradation curves would provide more useful information for feed evaluation. The aim of present study was to investigate the in-situ digestion parameters of citrus pulps as an alternative fibrous feedstuff, and to compare different mathematical models to select the best model for fitting the ruminal degradability data.

2. Methodology

Samples were dried in controlled conditions to avoid excessive dehydration and heat damage, which could result in formation of indigestible protein. Subsequently, samples were ground, sieved (Willy[®] Mill, 2 mm screen sieve) and combined for chemical analysis and in-situ degradability assays. Two yearling ruminal cannulated wethers $(35\pm1.8 \text{ kg})$ were used for in-situ degradability experiment.

Models I and II are simple negative exponential curve models (monomolecular, Mitscherlich, or first-order kinetics model) without and with a lag phase, respectively. Model III is Gompertz curve, asymmetrical about an inflection point M, which can be calculated from $K = \exp(cM)$. Model IV is generalized Mitscherlich, generalization of the model I (results in the model I for d = 0), with the addition of a square root time dependence component (Palangi, 2020). Mathematically, models I, II, III, and IV are specified in Equations 1, 2, 3 and 4, respectively.

$$P = a + b \left(l - e^{-ct} \right) \tag{1}$$

$$P = a + b (1 - e^{-c(t+L)})$$
(2)

$$P = a + b (K - K^{exp (-ct)}/K - 1)$$
(3)

$$P = a + b \left(1 - e^{-c(t-L) - d(\sqrt{t} - \sqrt{L})} \right)$$
(4)

Data of the DM and CP disappearance were fitted to each model by nonlinear regression using the Levenberg-Marquardt procedure of the MATLAB (MATLAB, 2019). In this study, optimization method was proposed, which combines MATLAB curve fitting toolbox and the numerical algorithm based on the Levenberg-Marquardt method. The models were identified through the editor toolstript, and the starting points and ranges required for the models were defined. The study used goodness-of-fit measure function to measure the error values of the fit curves in studied models. The mathematical model fitting was stopped when change in residuals were less than the tolerance. Effective degradability (ED) was calculated using Equation 5 (Ørskov *et al.*, 1980).

$$ED = a + [bc/(c+k)]$$
⁽⁵⁾

where a, b and c are the constants as described earlier in the different mathematical models above and k is the rumen fractional outflow rate (0.02/h, 0.03/h, 0.04/h, 0.05/h or 0.06/h).

3. Results and Discussion

3.1 Statistical Models Output

The results of the different digestible models on the DM degradability of citrus pulps are presented in Table 1. The comparison of various fitted models for DM degradability of citrus pulps based on the coefficient of determination (r^2) and adjusted R square (r^2) showed that model III was fitting the best for orange and tangerine but not biologically acceptable for grapefruit and lemon due to estimated negative values. Correspondingly, models I and II were best fitted for grapefruit and lemon. The challenge for the mathematical modeler is to develop a meaningful equation capable of describing such a group of accumulation curves. In this study, models I and II showed highest goodness parameters, which better describe the properties of citrus pulps. The process of fitting continued until change in residuals were less than tolerance, and then fitting was stopped. According to fitted model (model II), there was part of the lag time in degradability. This may mean that the degradability of citrus pulps takes some hours to start. Thus, it can be concluded that the formation of secondary structure of the cell wall in the citrus pulps would lead to an increase in structural compounds, increased pectin and cellulose content impeding the initiation of microbial degradation.

Comparison of different models for estimating ruminal CP degradation parameters of citrus pulps revealed that models I and II reported by Ørskov and McDonald (1979) reach convergence, while others, due to estimated negative values, were not biologically acceptable (Table 2). The results of this study demonstrated that model I is the best one among all fitted models given the higher value of adjusted R square (r^2).

According to Silva *et al.* (1997) values of soluble (a) and insoluble (b) fraction for DM of orange were 30.06 and 69.94, respectively. The present results were not in agreement with the findings of Silva *et al.* (1997). Values for CP soluble and insoluble fractions, reported by Pereira and Gonzalez (2004), were 39.5 and 55.5, respectively. These values were higher than our findings. These variations can be due to various factors such as citrus variety, drying processes, climate conditions and maturity.

Ą
늰
A
Σ
[q
Ξţ.
5
els Slo
ğ
й
1
Ca
ati
н
he
at
Ξ
nt
re
fe
Ę
ã
Е.
sn
S
μ,
Ы
пs
E
.2
of
S
fe
ne
ar
aı
7
Ξ,
ii
lal
ac
50
ď
Σ
Õ
g
ate
Ш
ŝti
щ
÷
le
ab
H

В

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30.02 60.52 0.1274 - - - 78.918 0.9718 0.9658 4 1 44.26 0.1274 - - - 78.918 0.9754 2 1 44.96 0.1386 - 0.006 46.025 0.9754 2 1 44.96 0.1398 1.806 -0.0134 - 75.178 0.9732 0.9517 5 1 42.14 44.6 0.1398 1.806 -0.0134 - 75.178 0.9732 0.9517 5 1 -134.3 58.35 0.1994 - - 26.220 0.9868 0.9833 05 1 -134.3 58.35 0.1994 - - 26.220 0.9868 0.9975 5 1 -134.3 8.38.3 0.2365 1.725 -0.0285 - 26.220 0.9840 0.9976 05 1 -134.3 38.38 0.2366 1.725 -0.0285		а	q	н Э	L	q	k	SSE^2	R-Square	Adj R- Square	Iter
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44.26 46.27 0.1274 0.2685 - - 78.918 0.9718 0.9578 3 44.98 44.22 0.1338 - - - 0.0006 46.025 0.9517 5 42.14 44.6 0.1398 1.806 -0.0134 - 75.178 0.9732 0.9517 5 32.17 60.29 0.1837 - - 2.0.0006 46.025 0.9836 0.9830 6 51.28 41.18 0.1837 - - 2.0.220 0.9868 0.9820 6 -134.3 58.35 0.1994 - - 2.6.220 0.9868 0.9920 5 -134.3 58.35 0.1994 - - 2.6.220 0.9868 0.9765 105 47.5 38.35 0.1994 - - 2.6.220 0.9867 0.9795 105 47.81 37.8 0.0763 0.4825 - 8.836 0.99749 5 <		30.02	60.52	0.1274	ı	ı	ı	78.918	0.9718	0.9638	4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44.98 44.22 0.3186 - - 0.0006 46.025 0.9836 0.9754 22 42.14 44.6 0.1398 1.806 -0.0134 - 75.178 0.9732 0.9517 5 32.17 60.29 0.1837 - - 26.220 0.9868 0.9802 6 51.28 41.18 0.1837 - - 26.220 0.9867 0.9785 105 47.5 38.38 0.2365 1.725 -0.0285 - 26.220 0.9867 0.9785 105 47.5 38.38 0.2365 1.725 -0.0285 - 60.939 0.9956 0.9763 5 47.81 37.89 0.0763 - - 60.939 0.9840 0.9764 5 40.17 43.17 0.0802 - - 60.939 0.9840 0.9764 5 40.17 43.17 0.0802 - - 75.862 0.9739 0.9664 <td></td> <td>44.26</td> <td>46.27</td> <td>0.1274</td> <td>0.2685</td> <td></td> <td></td> <td>78.918</td> <td>0.9718</td> <td>0.9578</td> <td>ŝ</td>		44.26	46.27	0.1274	0.2685			78.918	0.9718	0.9578	ŝ
42.14 44.6 0.1338 1.806 -0.0134 - 75.178 0.9732 0.9517 5 32.17 60.29 0.1837 - - - 26.220 0.9868 0.9830 6 51.28 41.18 0.1837 - - - 26.220 0.9868 0.9802 6 71.3 58.35 0.1994 - - - 26.220 0.9867 0.9785 105 -134.3 58.35 0.1994 - - - 0.66873 28.453 0.9877 0.9785 105 -134.3 58.35 0.1994 - - 0.66873 28.453 0.9877 0.9785 105 47.81 37.89 0.0763 0.4825 - - - 60.939 0.9840 0.9761 109 47.81 37.89 0.0763 0.4825 - - - 60.939 0.9841 0.9761 109 40.110 59.	42.1444.60.13981.806-0.0134-75.1780.97320.9517532.1760.290.183726.2200.98680.9830651.2841.180.183726.2200.98680.9930651.24.3553.350.199426.2200.98680.9930673.1760.290.199426.2200.98670.9930673.2338.380.23651.725-0.0285-8.8360.99400.9703547.538.380.076360.9390.98400.9704547.8137.890.07630.603160.4090.97410940.1743.170.08003.916-0.0083-0.60430.976110940.1743.170.08003.916-0.0083-60.4430.976110940.1743.170.08003.916-0.0083-75.8620.97690.976110940.6346.630.104175.8620.97390.9664340.6346.630.1022575.8620.97390.9664340.6546.630.1022675.8620.97390.9664340.6546.630.1021		44.98	44.22	0.3186	·		0.0006	46.025	0.9836	0.9754	22
32.17 60.29 0.1837 $ 26.220$ 0.9868 0.9830 6 51.28 41.18 0.1837 0.3812 $ 26.220$ 0.9868 0.9802 6 -134.3 58.35 0.1994 $ 26.220$ 0.9867 0.9785 105 -134.3 58.35 0.1994 $ 26.220$ 0.9867 0.9785 105 -134.3 58.35 0.1994 $ 8.836$ 0.9802 6 47.81 37.89 0.0763 0.4825 $ 60.939$ 0.9840 0.9761 109 47.81 37.89 0.0763 0.4825 $ 60.939$ 0.9840 0.9764 5 47.81 37.89 0.0763 0.4825 $ 60.499$ 0.9841 0.9764 5 40.17 43.17 <t< td=""><td>32.17 60.29 0.1837 26.220 0.9868 0.9830 6 51.28 41.18 0.1837 0.3812 26.220 0.9868 0.9802 6 51.28 41.18 0.1837 0.3812 26.220 0.9868 0.9802 6 47.5 38.38 0.2365 1.725 -0.0285 8.836 0.9902 6 47.81 37.89 0.0763 8.836 0.9940 0.9794 5 47.81 37.89 0.0763 60.409 0.9740 0.9774 5 47.81 37.89 0.0763 -4825 0.6031 60.409 0.9744 5 47.81 37.89 0.0882 60.409 0.9744 5 40.117 43.17 0.0882 0.0</td><td></td><td>42.14</td><td>44.6</td><td>0.1398</td><td>1.806</td><td>-0.0134</td><td>ı</td><td>75.178</td><td>0.9732</td><td>0.9517</td><td>5</td></t<>	32.17 60.29 0.1837 $ 26.220$ 0.9868 0.9830 6 51.28 41.18 0.1837 0.3812 $ 26.220$ 0.9868 0.9802 6 51.28 41.18 0.1837 0.3812 $ 26.220$ 0.9868 0.9802 6 47.5 38.38 0.2365 1.725 -0.0285 $ 8.836$ 0.9902 6 47.81 37.89 0.0763 $ 8.836$ 0.9940 0.9794 5 47.81 37.89 0.0763 $ 60.409$ 0.9740 0.9774 5 47.81 37.89 0.0763 -4825 $ 0.6031$ 60.409 0.9744 5 47.81 37.89 0.0882 $ 60.409$ 0.9744 5 40.117 43.17 0.0882 $ 0.0$		42.14	44.6	0.1398	1.806	-0.0134	ı	75.178	0.9732	0.9517	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32.17 60.29 0.1837 - - 26.220 0.9868 0.9830 6 51.28 41.18 0.1837 0.3812 - - 26.220 0.9868 0.9802 6 51.28 41.18 0.1837 0.3812 - - 26.220 0.9868 0.9802 6 7.13 58.35 0.1994 - - - 0.6873 28.453 0.9866 0.9902 6 74.7.5 38.38 0.2365 1.725 -0.0285 - 8.836 0.9940 0.9793 5 47.81 37.89 0.0763 - - 0.6031 60.409 0.9841 0.9761 109 40.17 43.17 0.0802 3916 -0.0083 - - 75.862 0.9794 5 40.17 43.17 0.0800 3.916 -0.0083 - 75.862 0.9794 5 40.14 0.1041 - - - 7	t										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51.2841.180.18370.381226.2200.98680.98026 -134.3 58.350.19940.687328.4530.99560.99205 -134.3 58.350.19940.6687328.4530.99560.99205 47.5 38.380.23651.725-0.0285-8.8360.99560.9765105 24.32 61.380.07630.482560.9390.98400.9761109 47.81 37.890.07630.482560.9390.98410.9761109 47.81 37.890.07630.482560.4430.98410.9761109 47.81 37.890.07633.916-0.008360.4430.97145 40.17 43.17 0.08003.916-0.008375.8620.97596 40.69 46.530.226575.8620.97390.96643 40.69 46.530.226575.8620.97390.96643 40.69 46.530.226575.8620.97390.96643 40.69 46.530.122221.6175.8620.97590.96884 40.65 42.980.102226.977999 40.69 46.		32.17	60.29	0.1837	ı	,	,	26.220	0.9868	0.9830	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		51.28	41.18	0.1837	0.3812			26.220	0.9868	0.9802	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	I	-134.3	58.35	0.1994	ı	ı	0.6873	28.453	0.9857	0.9785	105
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24:3261:380.076360.9390.98400.979451-101.059.640.088260.9390.98400.975957-101.059.640.08820.0603160.4090.98410.97611098-101.059.640.08820.060330.98410.97611098-101.059.640.08003.916-0.0083-60.4430.98410.97145832.4457.640.104175.8620.97390.96643140.6946.530.226575.8620.97390.96684140.6342.980.10211.61-0.02260.97590.963818140.6362.2420.015170.0570.97590.96684140.630.12221.61-0.02260.97590.96684140.630.12221.61-0.02260.97590.96684140.630.12221.61-0.02260.97590.96684140.630.12221.61-0.022668.2150.97590.96784140.6361.2980.12221.61-0.022668.2150.97590.9577 <td>~</td> <td>47.5</td> <td>38.38</td> <td>0.2365</td> <td>1.725</td> <td>-0.0285</td> <td>I</td> <td>8.836</td> <td>0.9956</td> <td>0.9920</td> <td>5</td>	~	47.5	38.38	0.2365	1.725	-0.0285	I	8.836	0.9956	0.9920	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	24.3261.380.076360.9390.98400.979451-101.059.640.088260.9390.98400.975957-101.059.640.08820.0603160.4090.98410.9761109740.1743.170.08003.916-0.0083-60.4430.98410.97145e32.4457.640.104175.8620.97390.96643740.6946.530.226575.8620.97390.96684140.6946.530.22650.015170.0570.97590.9638180luble fraction (%): b = slowly degradable fraction (%): c = degradation rate constant (%/h) of fraction b; $L = lag time (h)$; $d = is the parameter pertaining to the ional rate of degradation: k = slope, or degradation rate coefficient the response values: Adj R-Square = Degrees of square = the square of the correlation between the response values and the predicted response values: Adj R-Square = Degrees of$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	47.81 37.89 0.0763 0.4825 - - 60.939 0.9840 0.9759 5 7 -101.0 59.64 0.0882 - - 0.6031 60.409 0.9841 0.9761 109 7 40.17 43.17 0.0882 - - 0.6031 60.409 0.9841 0.9761 109 e 32.44 57.64 0.1041 - - 75.862 0.9739 0.9664 3 7 40.69 46.53 0.2265 - - 0.0151 70.057 0.9739 0.9668 4 1 40.63 42.98 0.11222 1.61 -0.0226 - 0.9755 0.9759 0.9638 18 1 40.63 42.98 0.1222 1.61 -0.0226 - 0.9755 0.9755 0.9577 4 1 40.63 42.28 0.1222 1.61 -0.0226 - 0.9755 0.9577 4		24.32	61.38	0.0763	·		ı	60.939	0.9840	0.9794	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I -101.0 59.64 0.0882 - - 0.6031 60.409 0.9841 0.9761 109 / 40.17 43.17 0.0800 3.916 -0.0083 - 60.443 0.9841 0.9761 109 e 32.44 57.64 0.1041 - - - 75.862 0.9739 0.9664 3 f 30.3 40.04 0.1041 - - - 75.862 0.9739 0.9668 4 f 40.69 46.53 0.2265 - - 0.0151 70.057 0.9759 0.9638 18 d 40.63 42.98 0.1222 1.61 -0.0226 - 68.215 0.9755 0.9577 4 colable fraction (%): $b = slowly degradate fraction (%): c = alegradation rate constant (%/h) of fraction b; L = lag time (h); d = is the parameter pertaining to the constant of degradation rate coefficient the response values and the predicted response values; Adj R-Square = Degrees of frames. Due to Error; R-Square = the square of the correlation between the response values and the predicted response valuees; Adj R-Square = Degrees of<$		47.81	37.89	0.0763	0.4825		·	60.939	0.9840	0.9759	S
V 40.17 43.17 0.0800 3.916 -0.0083 - 60.443 0.9841 0.9714 5 e 32.44 57.64 0.1041 - - - 75.862 0.9739 0.9664 3 e 32.44 57.64 0.1041 - - - 75.862 0.9739 0.9664 3 f 40.69 46.53 0.2265 - - 0.9051 70.057 0.9759 0.9608 4 i 40.63 42.98 0.1222 1.61 -0.0226 - 68.215 0.9765 0.9577 4	\prime 40.17 43.17 0.0800 3.916 -0.0083 - 60.443 0.9841 0.9714 5 e 32.44 57.64 0.1041 - - - 75.862 0.9739 0.9664 3 f 30.3 40.04 0.1041 - - 75.862 0.9739 0.9664 3 f 40.69 46.53 0.2265 - - 75.862 0.9739 0.9668 4 ℓ 40.63 42.98 0.1222 1.61 -0.0226 - 68.215 0.9759 0.9638 18 ℓ 40.63 42.98 0.1222 1.61 -0.0226 - 68.215 0.9755 0.9577 4 ℓ 40.63 ℓ	г	-101.0	59.64	0.0882	·		0.6031	60.409	0.9841	0.9761	109
<i>e</i> 32.44 57.64 0.1041 75.862 0.9739 0.9664 3 50.03 40.04 0.1041 0.3642 75.862 0.9739 0.9668 4 1 40.69 46.53 0.2265 0.0151 70.057 0.9759 0.9638 18 <i>v</i> 40.63 42.98 0.1222 1.61 -0.0226 - 68.215 0.9765 0.9577 4	e 32.44 57.64 0.1041 - - - 75.862 0.9739 0.9664 3 1 40.69 46.53 0.1041 0.3642 - - 75.862 0.9739 0.9664 3 $\sqrt{40.69}$ 46.53 0.2265 - - - 0.9759 0.9638 4 $\sqrt{40.63}$ 42.98 0.1222 1.61 -0.0226 - 68.215 0.9759 0.9638 18 $\sqrt{40.63}$ 42.98 0.1222 1.61 -0.0226 - 68.215 0.9765 0.9577 4 for al rate of degradation: $k = \text{ slowly degradable fraction (%); c = \text{ degradation rate constant (%/h) of fraction b; L = \text{ lag time (h); } d = is the parameter pertaining to the constant of the correlation between the response values and the predicted response values; Adj R-Square = Degrees of for Square = the square of the correlation between the response values and the predicted response values; Adj R-Square = Degrees of $	>	40.17	43.17	0.0800	3.916	-0.0083	ı	60.443	0.9841	0.9714	5
32.44 57.64 0.1041 - - - 75.862 0.9739 0.9664 3 50.03 40.04 0.1041 0.3642 - - 75.862 0.9739 0.9664 3 1 40.69 46.53 0.2265 - - 0.9151 70.057 0.9739 0.9608 4 1 40.63 46.53 0.2265 - - 0.9151 70.057 0.9759 0.9638 18 1 40.63 42.98 0.1222 1.61 -0.0226 - 68.215 0.9765 0.9577 4	32.44 57.64 0.1041 - - - 75.862 0.9739 0.9664 3 70.03 40.04 0.1041 0.3642 - - - 75.862 0.9739 0.9664 3 70.05 40.65 0.1041 0.3642 - - 0.9608 4 70.69 46.53 0.2265 - - 0.9759 0.9638 18 7 40.63 42.98 0.1222 1.61 -0.0226 - 68.215 0.9755 0.9577 4 0ubble fraction (%); $b = slowly degradable fraction (%); c = degradation rate constant (%/h) of fraction b; L = lag time (h); d = is the parameter pertaining to the ional rate of degradation; k = slope, or degradation rate coefficient the response values and the predicted response values; Adj R-Square = Degrees of for Square and the predicted response values; Adj R-Square = Degrees of $	9)										
50.03 40.04 0.1041 0.3642 - - 75.862 0.9739 0.9608 4 I 40.69 46.53 0.2265 - - 0.0151 70.057 0.9759 0.9608 4 i 40.63 42.98 0.1222 1.61 -0.0226 - 68.215 0.9765 0.9577 4	50.03 40.04 0.1041 0.3642 - - 75.862 0.9739 0.9608 4 1 40.69 46.53 0.2265 - - 0.0151 70.057 0.9759 0.9608 4 1 40.63 42.98 0.1222 1.61 -0.0226 - 68.215 0.9759 0.9538 18 1 40.63 42.98 0.1222 1.61 -0.0226 - 68.215 0.9765 0.9577 4 oluble fraction (%): $b = slowly degradable fraction (%): c = degradation rate constant (%/h) of fraction b: L = lag time (h): d = is the parameter pertaining to the isonal rate of degradation: k = slope, or degradation rate coefficient the response values the response values; Adj R-Square = Degrees of square = the square of the correlation between the response values and the predicted response values; Adj R-Square = Degrees of $		32.44	57.64	0.1041	ı		ı	75.862	0.9739	0.9664	б
I 40.69 46.53 0.2265 0.0151 70.057 0.9759 0.9638 18 V 40.63 42.98 0.1222 1.61 -0.0226 - 68.215 0.9765 0.9577 4	I 40.69 46.53 0.2265 - - 0.0151 70.057 0.9759 0.9638 18 $\sqrt{40.63}$ 42.98 0.1222 1.61 -0.0226 - 68.215 0.9755 0.9577 4 soluble fraction (%); $b = \text{slow}$) degradation rate constant (%/h) of fraction b; $L = \text{lag time (h)}; d = \text{is the parameter pertaining to the ional rate of degradation: k = \text{slope, or degradation rate coefficient (h^{-1}); 0.9765 0.9577 4 of Squares Due to Error; R-Square = the square of the correlation between the response values and the predicted response values; Adj R-Square = Degrees of 0.8700000000000000000000000000000000000$		50.03	40.04	0.1041	0.3642	'	ı	75.862	0.9739	0.9608	4
V 40.63 42.98 0.1222 1.61 -0.0226 - 68.215 0.9765 0.9577 4	I 40.63 42.98 0.1222 1.61 -0.0226 - 68.215 0.9765 0.9577 4 soluble fraction (%); $b = slowly degradable fraction (%); c = degradation rate constant (%/h) of fraction b; L = lag time (h); d = is the parameter pertaining to the ional rate of degradation; k = slope, or degradation rate coefficient (h^{-1}); of Squares Due to Error; R-Square = the square of the correlation between the response values and the predicted response values; Adj R-Square = Degrees of $	Г	40.69	46.53	0.2265	·		0.0151	70.057	0.9759	0.9638	18
	soluble fraction (%); $b =$ slowly degradable fraction (%); $c =$ degradation rate constant (%/h) of fraction b; $L =$ lag time (h); $d =$ is the parameter pertaining to the constant experiments of degradation; $k =$ slope, or degradation rate coefficient (h ⁻¹); of Squares Due to Error; R-Square = the square of the correlation between the response values and the predicted response values; Adj R-Square = Degrees of	>	40.63	42.98	0.1222	1.61	-0.0226		68.215	0.9765	0.9577	4

Ю
ΓA
ΥT
Ž
with
odels
Ē
cal
themati
t ma
lifferen
50
usir
pulps
citrus
of
parameters
ity
bil
legrada
Ę
d C
Estimate
5.
able
Ë

	Prameter ¹									
	а	q	с	Г	d	k	SSE^2	R-Square	Adj R-Square	Iter
Orange										
Model I^3	7.002	30.58	0.0605	ı		·	33.663	0.9672	0.9578	8
Model II	10.96	26.62	0.0605	0.1387	ı	ı	33.663	0.9672	0.9508	6
Model III	-135.6	30.09	0.0642	ı	ı	0.7982	36.064	0.9648	0.9472	109
Model IV	4.78	16.75	0.1822	1.119	-0.127	,	6.724	0.9934	0.9882	5
Grapefruit										
ModelI	9.19	27.02	0.0538	ı	·	ı	29.105	0.9644	0.9542	L
Model II	11.45	24.76	0.0538	0.0873			29.105	0.9644	0.9466	6
Model III	-116.6	26.58	0.0567	ı		0.7979	30.938	0.9622	0.9432	109
Model IV	4.47	15.3	0.2135	0.7401	-0.1353		10.206	0.9875	0.9775	7
Lemon										
Model I	2.53	27.24	0.0888	I			11.628	0.9834	0.9787	9
Model II	7.38	22.39	0.0888	0.1961			11.628	0.9834	0.9751	9
Model III	-78.16	26.73	0.0992	·	'	0.6999	12.102	0.9827	0.9741	109
Model IV	6.57	18.34	0.1158	2.02	-0.0393		8.107	0.9884	0.9792	4
Tangerine										
Model I	6.28	28.77	0.0574	ı	ı	ı	16.511	0.9817	0.9765	S
Model II	9.86	25.19	0.0574	0.1331	'	·	16.511	0.9817	0.9726	6
Model III	-121.4	28.31	0.0612	ı	'	0.7887	18.105	0.9799	0.9699	109
Model IV	5.32	16.75	0.1226	1.02	-0.0989	ı	7.1358	0.9921	0.9858	5
a = rapidly soluble variable fractional	fraction (%); b ate of degradati	= slowly degr on; $k =$ slope,	radable fraction or degradation	(%); $c = degrae rate coefficient$	dation rate con: (h ⁻¹);	stant (%/h) of 1	fraction b; $L = 1$	lag time (h); $d =$ is	the parameter pertaini	ing to the
2 SSE = Sum of Squ	lares Due to Erre	or; R-Square =	= the square of t	the correlation t	between the res	sponse values a	und the predicte	d response values;	; Adj R-Square = Degr	ees of
Freedom, Adjusted ³ Model I first-orde	r kinetics model	= iteration nui without lag n	mber of MATL, hase: Model II	AB; first-order kine	stics model with	h lao nhaca. M	fodel III Gomp	ertz model: Mode	I IV ceneralized Mitso	harlich
model.		A JULIOUL JAS	JIIASC, MOUCI II,	TILD TO TO TO TALL	TIM TOTOL MIL	и над риазе, и	iouci III, Comp			

S
odel
н
cal
atio
mathem
nt
differe
33
usi
SC
llu
sF
Ы
<u>.</u>
of
otein
pro
de
n
d d
an
Б
att
Ë
lry
of c
Õ
Щ
ed
nat
tin
$\mathbf{E}_{\mathbf{S}}$
З.
ole
at
L

		DN	V_1					CP		
	$k^{2} = 0.02$	k = 0.03	k = 0.04	k = 0.05	k = 0.06	k = 0.02	k = 0.03	k = 0.04	k = 0.05	k = 0.06
Orange Model 1 ³	87 33	79.01	76.08	73 48	71 16	29.98	77 AA	25.41	73 74	<i>77</i> 36
Model II	84.25	81.71	79.47	77.49	75.72	30.97	28.76	26.98	25.53	24 32
Model III	86.59	85.39	84.27	83.20	82.19	-	-)))	
Model IV	81.16	78.86	76.82	74.99	73.35	19.87	19.16	18.51	17.92	17.38
Grapefruit										
Model I	86.54	84.00	81.68	79.56	77.62	28.89	26.54	24.69	23.20	21.97
Model II	88.42	86.68	85.10	83.65	82.32	29.50	27.35	25.66	24.29	23.16
Model III							ı	ı		
Model IV	82.89	81.56	80.33	79.18	78.11	18.46	17.88	17.35	16.86	16.41
Lemon										
Model I	72.96	68.38	64.59	61.40	58.68	24.77	22.90	21.32	19.96	18.79
Model II	77.83	75.01	72.67	70.70	69.02	25.66	24.12	22.82	21.71	20.74
Model III	'	'		'			ı	ı	'	'
Model IV	74.71	71.57	68.95	66.74	64.84	22.21	21.14	20.20	19.38	18.65
Tangerine										
Model I	80.79	77.18	74.08	71.38	69.01	27.61	25.17	23.23	21.65	20.34
Model II	83.62	81.11	78.96	77.08	75.43	28.54	26.40	24.70	23.32	22.17
Model III	83.44	81.78	80.24	78.81	77.48		ı	ı	'	'
Model IV	77.56	75.14	73.01	71.13	69.46	19.72	18.78	17.95	17.22	16.57
¹ DM = effective rumii ${}^{2}k$ = the rumen fractio Model IV, Generalized	nal degradabilit nal passage rate d Mitscherlich	y of dry matter e; ³ Model I, firs model	; CP = effectiv st-order kinetic	'e ruminal degi ss model witho	adability of crude: ut lag phase; Mode	protein I II, first-order kin	etics model wi	th lag phase; N	fodel III, Gom	pertz model;

3.2 Effective Degradability

Table 3 shows the effective degradability of citrus pulps in the assumed values of ruminal rate of passage rate (0.02/h, 0.03/h, 0.04/h, 0.05/h or 0.06/h). The ED declined as passage rates increased; if the passage rates increased, the rumen microorganisms will not have enough time to affect the feed. The amount of ED for crude protein in model II was greater. This is due to the dissimilar behavior of different models for the degradability of dry matter and crude protein. On the one hand, the ruminal biodegradability of CP affects the efficiency of nitrogen use for microbial protein synthesis. On the other hand, starch fermentation rates can also affect the rate of ammonia consumption by altering the energy supply for microbial growth (Owens and Basalan, 2016).

4. Conclusion

It can be concluded that only models I and II can be used for estimating the degradability of DM and CP of citrus pulps. However, considering similar performance of the tested models, the biological characteristics of the models should be taken into account in order to implement the estimated parameters for practical use. In addition, citrus pulp may be used in ruminant rations as an alternative feed source to roughage. Nevertheless, more in-vivo along with in-situ and in-vitro studies are required to determine the actual nutritive value of citrus pulp for ruminant animals.

5. Acknowledgement

The author wishes to express my sincere gratitude to Mrs. Somayyeh Shabestani for her valuable support in the English edition.

6. References

Ammerman, C.B., & Henry, P.R. (1991). Citrus and vegetable products for ruminant animals. Proceedings of the Alternative Feeds for Dairy and Beef Cattle Symposium, St. Louis, MO, USA, 103-110.

Food and Agriculture Organization (FAO). (2017). Citrus fruit, fresh and processed. Statistical bulletin 2016. Rome: Trade and Markets Division.

Fessenden, S.W., Hackmann, T.J., Ross, D.A., Block, E., Foskolos, A., & Van Amburgh, M.E. (2019). Rumen digestion kinetics, microbial yield, and omasal flows of nonmicrobial, bacterial, and protozoal amino acids in lactating dairy cattle fed fermentation by-products or urea as a soluble nitrogen source. Journal of Dairy Science, 102(4), 3036-3052. https://doi.org/10.3168/jds.2018-15448

Karlsson, J., Lindberg, M., Åkerlind, M., & Holtenius, K. (2020). Whole-lactation feed intake, milk yield, and energy balance of Holstein and Swedish Red dairy cows fed grass-clover silage and 2 levels of byproduct-based concentrate. Journal of Dairy Science, 103(10), 8922-8937. https://doi.org/10.3168/jds.2020-18204

MATLAB. (2019). MATLAB Deep Learning Toolbox[™] User's Guide: PDF Documentation for Release R2019a. The MathWorks, Inc.

Miron, J., Yosef, E., Ben-Ghedalia, D., Chase, L.E., Bauman, D.E., & Solomon, R. (2002). Digestibility by dairy cows of monosaccharide constituents in total mixed rations containing citrus pulp. Journal Dairy Science, 85(1), 89-94. https://doi.org/10. 3168/jds.S0022-0302(02)74056-3

Nogales-Mérida, S., Tomás-Vidal, A., Cerdá, M.J., Sánchez-Lozano, N.B., Velazco-Vargas, J., & Martínez-Llorens, S. (2019). The use of citrus pulp silage in Diplodus puntazzo nutrition. International Journal of Recycling of Organic Waste in Agriculture, 8, 111-118. https://doi.org/10.1007/s40093-018-0235-5

Ørskov, E.R.I., & McDonald, I.M. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science (Cambridge), 92, 499-503. https://doi.org/10.1017/S 0021859600063048

Ørskov, E.R., Hovel, F.D.B., & Mould, F.L. (1980). The use of the nylon bag technique for evaluation of feedstuffs. Tropical Animal Production, 5, 195-213.

Owens, F.N., & Basalan, M. (2016). Ruminal fermentation. In D. Millen, M.D.B Arrigoni, & R.D.L. Pacheco (Eds.), Rumenology (pp. 63-102). Switzerland: Springer, Cham.

Palangi, V., Macit, M., & Bayat, A.R. (2020). Mathematical models describing disappearance of Lucerne hay in the rumen using the nylon bag technique. South African Journal of Animal Science, 50(5), 719-725. http://dx.doi.org/10.431 4/sajas.v 50i5.9

Palangi, V., & Macit M. (2019). In situ crude protein and dry matter ruminal degradability of heat-treated barley. Revue de Médecine Vétérinaire, 170(7-9), 123-128.

Palangi, V., Taghizadeh, A., & Sadeghzadeh, M.K. (2013). Determine of nutritive value of dried citrus pulp various using in situ and gas production techniques. Journal of Biodiversity and Environmental Sciences. 3(6), 8-16.

Pang, D., Yan, T., Trevisi, E., & Krizsan, S.J. (2018). Effect of grain-or by-productbased concentrate fed with early-or late-harvested first-cut grass silage on dairy cow performance. Journal of Diary Science, 8, 7133-7145. https://doi.org/10.3168/jds.201 8-14449

Pereira, J.C., & Gonzalez, J. (2004). Rumen degradability of dehydrated beet pulp and dehydrated citrus pulp. Animal Research 53, 99-110. https://doi.org/10.1051/animres: 2004005

Silva, A.G., Wanderley, R.C., Pedroso, A.F., & Ashbell, G. (1997). Ruminal digestion kinetics of citrus peel. Animal Feed Science and Technology 68, 247-257. https://doi.org/10.1016/S0377-8401(97)00056-4

Solomon, R., Chase, L.E., Ben-Ghedalia, D., & Bauman, D.E. (2000). The effect of nonstructural carbohydrate and addition of full fat extruded soybeans on the concentration of conjugated linoleic acid in the milk fat of dairy cows. Journal Dairy Science 83, 1322-1329. https://doi.org/10.3168/jds.S0022-0302(00)74998-8

Taghizadeh, A., Safamehr, A., Palangi, V., & Mehmannavaz, Y. (2008). The determination of metabolizable protein of some feedstuffs used in ruminant. Research Journal of Biological Sciences, 3, 804-806.