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Abstract 
 

This work proposed a novel algorithm, adaptive contrast stretching algorithm (ACS), 

in improving face recognition under varying illumination conditions. The ACS 

algorithm, whose building blocks are tuned logarithm filter and anisotropic diffusion 

filter (ADF), was used to preprocess samples of face images obtained from the 

extended Yale face database B. The resulting preprocessed data was split into training 

and testing datasets. While the training dataset was used to train a deep convolutional 

neural network (DCNN), the testing dataset was subdivided into four subsets based on 

the azimuthal angle of illumination. In order to compare the recognition accuracy 

obtained from using the ACS algorithm, the face images in the training dataset were 

successively processed using discrete cosine transform, difference of Gaussian, weber 

faces, multi-scale retinex and single-scale retinex. The respective output images 

obtained from each technique were used to train the DCNN. The result obtained from 

each technique showed that the developed ACS algorithm significantly outperformed 

other algorithms used in this study with an accuracy of 95%. This value is 2.5% greater 

than the unimproved version of the ADF, which is currently one of the acclaimed 

techniques used by most computer vision researchers in the surveyed literature. 
 

 

Keywords: varying illumination, face recognition, recognition accuracy, adaptive 
contrast stretching, deep convolutional neural network 

 

 

1. Introduction 

 

Varying illumination is one of the limitations of face recognition technology. 

This is because in practical face recognition, the ambient conditions are not 

usually regulated. The implication is that a perfectly lit face image is not 

always guaranteed (Anila and Devarajan, 2012). Images of the same faces can 

appear differently due to the change in lighting conditions of its location. This 

is attributed to the fact that in such conditions, the inherent face image features 
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such as edges are usually interpreted vaguely owing largely to differences in 

illumination which interfere with unique face features (Ramchandra and 

Kumar, 2013). To address this problem, a wide spectrum of algorithms have 

been introduced by researchers. According to Santamaria and Palacios (2005), 

most of these algorithms are relatively complex and to a large extent, lead to 

loss of important image information, reduction in the richness of face images 

and a more restricted mode of extracting illumination invariants. Thus, there 

is need to develop a robust and adaptive algorithm that will preserve the 

quality and richness of face images and improve the accuracy of face 

recognition under varying illumination conditions. 

 

Several methods in reducing the effect of illumination variation in face 

recognition have been proposed. To name one, Aggarwal and Chellappa 

(2005) proposed an analysis-by-synthesis approach for face recognition under 

the condition of multiple light sources. The approach, which was based on the 

assessment of the hard non-linearity in the Lambert’s law, is more realistic 

than a single light source. It was observed that the performance of the 

proposed algorithm did not require the knowledge of the number light sources. 

It was also observed that the proposed algorithm worked well even when 

recognizing faces illuminated by different number of light sources. 

 

Similarly, Chen et al. (2006) proposed a novel method in normalizing 

illumination in the presence of illumination variation in face recognition 

technologies. The authors employed a discrete cosine transform (DCT) 

method to compensate for the illumination unevenness in the logarithm 

domain. A number of DCT coefficients were truncated in order to minimize 

variations under different lighting conditions, since variations in illumination 

lies in the low-frequency band of an image. The study outcome was further 

validated against Yale-B database and CMU-Pose, Illumination, and 

Expression (PIE) database. It turned out that the proposed technique 

succeeded in improving the performance of a real-time face recognition 

system. However, the truncation of the DCT coefficient limited the 

effectiveness of the technique due to significant reduction in the richness of 

the formed image.  

 

Local Gabor exclusive XOR pattern (LGXP) is another algorithm that is used 

to encode the Gabor phase by utilizing the local XOR pattern (LXP) operator. 

This approach is a block-based Fisher’s discriminator (BFLD) and was used 

to reduce the dimensionality of a proposed descriptor and enhance its 

discriminative power. The local patterns of Gabor magnitude and phase were 
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finally used for face recognition. The method was evaluated using the face 

recognition technology (FERET) and the face recognition grand challenge 

(FRGC) 2.0 databases. After extensive performance evaluation and 

comparison of the method with other Gabor patterns, it was discovered that 

LGXP descriptor was very effective and outperforms most modern 

approaches (Xie et al., 2010). However, the major loophole in using this 

method was the increased dimensionality of the feature space. 

 

Furthermore, Chunnian (2012) proposed a non-sampled contourlet transform 

method for face image enhancement. In the proposed method, the authors 

employed four different operations on the experimental face image. The face 

image was first normalized. A logarithmic transformation was then carried out 

on the face image to decompose the image into low frequency and high 

frequency sub-band components. This operation was followed by an adaptive 

normal shrink operation on both the low and high frequency components in 

other to eliminate any noise. Finally, a histogram equalization was then 

applied to the low frequency component with the aim to further reduce any 

remaining noise. The illumination invariant was eventually extracted by 

inverse non-sampled contourlet transform using the modified frequency 

components. 

 

In the same vein, Zhou et al. (2013) proposed an adaptive scheme based on a 

fast bi-directional ensemble empirical mode decomposition (FBEEMD) and 

detail feature fusion. In the study, it was explained that FBEEMD is a fast 

feature of bi-directional, ensemble empirical mode decomposition (BEEMD) 

with a unique feature of low time-consuming surface interpolation and 

iteration computation decomposing an image into high-frequency sub-images 

that matches detailed feature and high frequency sub-images matching contour 

features. Two measures were proposed to calculate weights in quantifying the 

image feature. With this technique, an illumination-neural facial image was 

developed that helped to improve face recognition rate. These finding were 

verified by testing against Yale-B, PIE and FERET databases. 

 

The study presented in Kang and Pan (2014) suggested a hybrid face 

recognition system that employed three image enhancement techniques. The 

first stage was histogram equalization (HE) – used to improve the overall 

contrast of the image. The logarithmic transform (LT) was then applied to 

enhance image details. Finally, the resulting image was filtered using a high 

pass filter to further recover the feature of the image. The authors’ main 
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motivation was the existence of low noise frequency featured in low-light 

regions of an image. 

 

Based on Lambert reflectance model a new method was proposed by Zhuang 

et al. (2015) to tackle the issues concerning illumination variation in face 

recognition. A fast mean filter (FMF) was proposed to help repair the defects 

caused by the process of illumination invariants extraction. Non-linear 

normalization transformation was then used to increase the richness of the 

image information. The proposed method was compared with other state-of-

the-art methods. It was established that the proposed method can extract more 

robust illumination invariants and also retain image information; thus, 

enhancing face recognition rates. 

 

Yang et al. (2017) presented an illumination processing approach based on 

nonlinear dynamic range adjustment and gradient faces. In this method, the 

grayscale of face image was adjusted by nonlinear dynamic range adjustment 

using hyperbolic sine function in the logarithmic domain. The resulting 

gradient faces were then used to enhance the high frequency component of the 

face image and extract distinguishing facial features. Finally, these features 

were classified using principal component analysis (PCA). 

 

Manhotra and Sharma (2017) formulated an illumination invariant face 

recognition algorithm based on the combination of gradient based illumination 

normalization and fusion of two illumination invariant descriptors.  The ratio 

of the gradient amplitude and original image intensity provided the 

illumination invariant representation. Local binary pattern (LBP) and local 

ternary pattern (LTP) algorithms were used to extract the illumination 

invariants from the face image. 

 

A Gabor phase based method was developed by Fan et al. (2017) in other to 

eliminate the effect of complex illumination. The authors used a set of two-

dimensional (2-D) real Gabor wavelet with different directions to transform a 

normalized illumination on face images. The resulting multiple Gabor 

coefficients were then combined into a single representation extracting the 

illumination invariants. 

 

Tran et al. (2017) proposed a method that combines both illumination pre-

processing and singular value decomposition (SVD) to improve the efficiency 

of face recognition under varying illumination conditions. The training images 

were first preprocessed by an illumination preprocessing method and then 
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SVD was utilized to encode the pre-processed images. Following the 

application of LTP for feature extraction was illumination normalization. 

During the recognition phase, Chi-square method was used to check the 

dissimilarity measure between the probe images and the training set. 

 

The above-mentioned chronological review from 2005 to 2017 shows various 

proposed to increase the efficiency of face recognition under uncontrolled 

illumination conditions. Similarly, the review shows some limitations of these 

each techniques. Although these techniques have succeeded in extracting the 

illumination invariants, they only retained little vital image information during 

preprocessing, thus, reducing recognition accuracy when applied to a face 

image recognition pipeline. Hence, it is important to develop an alternative 

algorithm that is not only immune to illumination variation but also has the 

ability to retain vital information of the face image, thereby improving overall 

face recognition accuracy under varying illumination conditions. To achieve 

this objective, this study was carried out with the aim of developing an 

adaptive contrast stretching (ACS) algorithm for preprocessing face images 

under varying illumination conditions.  

 

 

 

2. Methodology 

 

Divided into three stages, the modularized methodology used in this study is 

presented in Figure 1.  
 

 

 

 

 

 

 

 

 
 

 

 

 
 

Figure 1. Modules of the methodology 
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2.1 Preprocessing Stage 

 

2.1.1 Data Acquisition 

 

This sub-stage focuses on data collection for the study. The first 20 characters 

of the extended Yale face database B, which comprised 1280 face images 

characterized by varying illumination, were retrieved. The retrieved 1280 face 

images formed the face image dataset for this study. The dataset was divided 

into two sets, namely training and testing sets. The training set contains 44 

face images per character, summing up 880 face images for the said set. The 

testing set was first divided into subset 1, 2, 3 and 4 according to the azimuthal 

angle of illumination (denoted by P00A in the image file). Each character in 

subset 1 consisted of five face images having azimuthal angle in the range of 

-110 to -130. As an example, for the first character, face images contained in 

subset 1 are yaleB01_P00A-110E+40.pgm, yaleB01_P00A-110E+65.pgm, 

yaleB01_P00A-110E-20.pgm, yaleB01_P00 A-120E+40.pgm and 

yaleB01_P00A-110E+40.pgm. Subsets 2, 3, and 4 contained face images with 

azimuthal angle of illumination ranging from -25 to -35, +25 to +35, and +110 

to +130, respectively. The overall steps involving the data preparation are 

shown in Figure 2. The samples of datasets per subset in each testing set from 

the extended Yale face database B are shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

Figure 2. Stages of dataset acquisition 
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Figure 3. Samples of the testing datasets per subset 

 

2.1.2 Max-min Filtering 

 

After the image acquisition, the filtering phase was introduced using 

Lambert’s reflectance principle. By this principle, according to Unimap 

(2014), images are divided into two components – the high and the low 

frequency component. According to Chen et al. (2000), the Lambertian 

reflectance model is expressed mathematically in Equation 1. 

 

I(x,y) = L(x,y) × R(x,y)                                     (1) 

 

where L(x,y) and R(x,y) represent the actual illumination and reflectance, 

respectively. R(x,y) is the high frequency component because it changes at a 

very fast rate, L(x,y) is the low frequency component because it changes at a 

very slow rate while I(x,y) is the actual face image. Under different image 

acquisition environment, as the essential surface feature of human face 

changes, R remains unchanged, while L changes slowly. This makes the 

reflectance R an illumination invariant. This assumption is not always true as 

even the high frequency component; R has its low frequency characteristics. 

Thus, illumination invariants was considered for both high and low frequency 
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components. As a result, the local maximum and local minimum of the face 

image intensity, I, were computed and used to account for the high and low 

frequency components of the illumination. Equations 2a and 2b show the 

mathematical expression that was used for the max and min filters that were 

used to extract the neighborhoods local maximum and minimum of the face 

images pixel-by-pixel as provided in Verbeek et al. (1988). 

 

Lmax = max
(i,j)∈W

(I(x,y)|(x,y)∈W )                                (2a) 

 

Lmin = min
(i,j)∈W

(I(x,y)|(x,y)∈W )                               (2b) 

 

where W is the neighborhood filter window. The max filter calculates the 

maximum of the pixels in the 3-by-3 neighborhood including the central pixel. 

The min filter calculates the minimum of the pixels in the 3-by-3 

neighborhood including the central pixel. The 3-by-3 neighborhood topology 

was utilized in this study due to its simplicity. 

 

2.1.3 Image Fusion 

 

Image fusion is the third sub-stage of the preprocessing stage as shown in 

Figure 1. An illumination fusion operation was implemented on Lmax and Lmin 

image components by finding their average, pixel-by-pixel for each 

corresponding location. This was done by using the approach, proposed by 

Cheng et al. (2017), which enhanced the distinction of both the light shielding 

edges and other regions. The fused image, Ie, was obtained using Equations 3, 

4 and 5 expressed mathematically by Cheng et al. (2017). 

 

Ie= 
Lmax(i,j) – I(i,j)

Lmax(i,j)
 

 

t = mean(Ie) + 0.6(max(Ie) – mean(Ie)) 
 

 

Lmax= {
Lmax(x,y)         Ie(x,y) ≥  t

Lmin(x,y)         Ie(x,y) < t
 

 

2.2 Algorithm Development Stage 

 

2.2.1 Anisotropic Diffusion Filtering 

 

The anisotropic diffusion filter algorithm by Perona and Malik (1990) was 

adopted. The role of the filter was to facilitate a stronger relationship among 

(3) 

(4) 

(5) 
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neighbouring pixels of illumination and to better preserve image edge 

information. The mathematical expression of the anisotropic filter adopted 

from Perona and Malik (1990) is given in Equation 6. 

 

Lfused
t+1

= Lfused
t

 
λ

|η(x,y)|
∑ g

k
( |∇L((x,y),p)| )∇L((x,y),p)p∈(x,y)                  (6) 

 

where t is the number of iterations; λ is a parameter used to measure the rate 

of diffusion of information across edges; η(x,y) is the number of neighbors 

from all four directions (North, South, West, and East); and (x,y) denotes the 

pixel position in the discrete 2-D grid. 

 

where ∇ used in Equation 6 is the continuous form gradient operator and g is 

the conduction coefficient. The symbol ∇ is a scalar quantity that measures the 

difference between neighboring pixels in each direction. According to 

Kamalaveni et al. (2015), the value of g was determined using Equation 7. 

 

 = exp (– (
||∇||

K
)
2

)                                    (7) 

 

The value of g was calculated for the four directions within the same 

neighborhood. In Equation 7, K is the gradient threshold parameter, whose 

value used in this study was based on the findings in Tsiotsios and Petrou 

(2013). 

 

2.2.2 Illumination Invariant Extraction 

 

In this sub-stage, the illumination invariant extraction was carried out based 

on the approach presented in Unimap (2014). This was obtained by making 

use of Lambert’s reflectance model expressed mathematically in Equation 8.   

 

R(x,y)=
I(x,y)

Lfused(x,y)
 

 

where I(x,y) is the original unprocessed face image and Lfused(x,y) is the filtered 

fused image obtained from Equation 1. 

 

2.2.3 Adaptive Contrast Enhancement 

 

After extracting the illumination invariant, the resulting image passed through 

the developed adaptive contrast enhancement algorithm in order to enhance 

(8) 

g 
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the edges of the invariant. The adaptive image contrast enhancement algorithm 

was built around the comparison of the entropy of the different enhanced 

images based on the amount of illumination, the azimuthal and elevation angle 

of illumination. The adaptive contrast enhancement algorithm developed is 

called the ACS algorithm. 

 

Prior to determining the mean of the illumination invariant, R was first 

converted to a more precise double type, which also allowed for a reasonable 

scaling of the image. Following the conversion, the mean of all pixels in R 

was determined. According to Blanchet and Charbit (2014), this process is 

mathematically expressed in Equation 9. 

 

Rmean= 
∑ ∑ R(i,j)

j=M

j=1
i=N
i=1

N × M
 

 

where N is the row length of  R; M is its column length; N × M represents the 

size of R; and Rmean is the resulting mean image. 

 

Two illumination scenarios were considered when developing the ACS 

algorithm. These were the uniform contrast improvement (UCI) and non-

uniform contrast improvement (NCI). These two scenarios implemented 

contrast improvement based on the illumination characteristics of the face 

images, used in this study, provided by Gonzalez and Wood (2009). The 

relationship between the logarithm transformation of pixels and pixel 

intensities was exploited. The notion behind this method is that as pixels are 

logarithmically transformed, there is corresponding exponential increase in 

the intensities of pixels. However, rate of change of the exponential graph 

decreases with further decrease in the logarithm of the transformed pixel. The 

contrast of the illumination invariant obtained was enhanced for all R 

including the training and testing image data. The value of R with varying 

degree of illumination variation was contrast-improved. Its value assumes two 

forms; one with high value of illumination variation and another with low 

value of illumination variation. Each of the two classes of R has different 

illumination properties. The difference in the illumination properties was 

utilized to develop the ACS algorithm that helped in producing an optimally-

normalized variant of R, which eventually aided the development of effective 

face recognition system. The algorithm below explains the various steps 

involved in developing the ACS algorithm for this study. In the algorithm 

(Figure 4), the variables with subscripts M was used in the UCI, while the 

variables with subscripts N were employed in the NCI scenario. 

(9) 



C. G. Olebu & J. J. Popoola / Mindanao Journal of Science and Technology Vol. 18 (2) (2020) 84-107 

94 

 

Input: 𝑅𝑚𝑎𝑟𝑟𝑎𝑦 = ∅; 𝑅𝑛𝑎𝑟𝑟𝑎𝑦 = ∅; 𝑅𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑀)
𝑡𝑜𝑡𝑎𝑙 = ∅; 𝑅𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑀)

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = ∅; 𝑅𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑀)
𝑠𝑑 = ∅; 

              𝑅𝑛𝑜𝑛𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑁)
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = ∅; 𝑅𝑛𝑜𝑛𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑁)

𝑠𝑑 = ∅; 

Output: 𝑀𝑜𝑝, 𝑁𝑜𝑝 

for 𝑀 = 0.5 to 8.0 step 0.5      

      𝑅𝑚𝑎𝑟𝑟𝑎𝑦 ≔ 𝑅𝑚𝑎𝑟𝑟𝑎𝑦 + 𝑅𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑚 

      𝑅𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑀)
𝑡𝑜𝑡𝑎𝑙 ≔ 𝑅𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑀)

𝑡𝑜𝑡𝑎𝑙 + 𝑅𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑀)
𝑡𝑜𝑡𝑎𝑙 (𝑀) 

      𝑅𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑀)
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ≔ 𝑅𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑀)

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 + 𝑅𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑀)
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑀) 

      𝑅𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑀)
𝑠𝑑 ≔ 𝑅𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑀)

𝑠𝑑 + 𝑅𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑀)
𝑠𝑑 (𝑀) 

end 

for 𝑁 = 0.2 to 2.0 step 0.2      

      𝑅𝑛𝑎𝑟𝑟𝑎𝑦 ≔ 𝑅𝑛𝑎𝑟𝑟𝑎𝑦 + 𝑅𝑒𝑛𝑡𝑟𝑜𝑝𝑦𝑛 

      𝑅𝑛𝑜𝑛𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑁)
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 ≔ 𝑅𝑛𝑜𝑛𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑁)

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 + 𝑅𝑛𝑜𝑛𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑁)
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑁) 

      𝑅𝑛𝑜𝑛𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑁)
𝑠𝑑 ≔ 𝑅𝑛𝑜𝑛𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑁)

𝑠𝑑 + 𝑅𝑛𝑜𝑛𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑁)
𝑠𝑑 (𝑁) 

end 

𝑅𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑀)
𝑚𝑖𝑛 ← 𝑚𝑖𝑛(𝑅𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑀)

𝑠𝑑 ) 

𝑅𝑛𝑜𝑛𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑁)
𝑚𝑖𝑛 ← 𝑚𝑖𝑛(𝑅𝑛𝑜𝑛𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑁)

𝑠𝑑 ) 

𝑅𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑀)
𝑚𝑎𝑥 ← 𝑚𝑖𝑛(𝑅𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑀)

𝑎𝑣𝑒𝑟𝑎𝑔𝑒
) 

𝑅𝑛𝑜𝑛𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑁)
𝑚𝑎𝑥 ← 𝑚𝑖𝑛(𝑅𝑛𝑜𝑛𝑢𝑛𝑖𝑓𝑜𝑟𝑚(𝑁)

𝑎𝑣𝑒𝑟𝑎𝑔𝑒
) 

//Optimal 𝑀 (𝑀𝑜𝑝) and 𝑁 (𝑁𝑜𝑝) are selected using lines 17-20 

return 𝑀𝑜𝑝, 𝑁𝑜𝑝 

 

Figure 4. The ACS algorithm 

 

Two arrays, Rmarray and Rnarray, are initialized an empty arrays. Then the 20th 

face image in the training set is selected. Two parameters, Runiform and Rnonuniform 

are developed, such that each of them are adapted to normalize the different 

variants of R that are obtainable. Equations 10 and 11 mathematically define 

the value of Runiform and Rnonuniform, respectively. 

 

Runiform=
1

1 + (
M

R + eps
)

4                                          (10) 

 

Rnonuniform= 
1

1+ (
2.25

(R + eps)N
)
                                      (11) 

 

where M in Equation 10 is an integer and varies between 0.5 and 8.0 in steps 

of 0.5 for uniform illumination. Similarly, N in Equation 11 is an integer that 

varies between 0.2 and 2.0 in the steps of 0.2 for non-uniform illumination; R 

is the illumination invariant and eps in both equations is epsilon, which is the 

distance of 1.0 to the next large double-precision number and has a numerical 

value of 2.2204 ✕ 10-16 (Gonzalez and Wood, 2009). 

 

The essence of determining the image entropy was to measure the degree of 

randomness of Runiform.  The entropy of Runiform was determined in order to 
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establish a performance threshold, which was used in optimally selecting the 

best value for illumination invariant for the training and recognition phase. 

The degree of randomness Runiform and Rnonuniform were computed using 

Equations 12a and 12b, respectively, given by Gonzalez et al. (2004). 

  

Rentropym = ent(Runiform)                                   (12a) 

 

Rentropyn = ent(Rnonuniform)                                     (12b) 

 

where ent(.) is a function that computes the entropy of an image. After the 

entropy measurement is the statistical analysis of the image. Hence, the total 

value of Runiform and Rnonuniform for each column of M was computed for the 

total uniform and non-uniform components as Runiform(M)
total

 and Rnonuniform(N)
total

, 

respectively. In addition, the standard deviation and average values of Runiform 

and Rnonuniform were also computed as Runiform(M)
sd

, Runiform(M)

average
 and Rnonuniform(N)

sd
, 

Rnonuniform(N)

average
, respectively for each column value of M. The minimum value of 

Runiform(M)
sd

 and Rnonuniform(N)
sd

 were then respectively determined using Equations 

13a and 13b. 

 

Runiform(M)
min

=min(Runiform(M)
sd

)                                         (13a) 

 

Rnonuniform(N)
min

=min(Rnonuniform(N)
sd

)                                      (13b) 

 

where min(.) computes the minimum of the arguments provided which shows 

the deviation of Runiform(M)
sd

 from the average value  Runiform(M)

average
. Similarly, the 

maximum value of Runiform(M)

average
 and Rnonuniform(N)

average
 were computed using 

Equations 14a and 14b. 

 

Runiform(M)
max

=max(Runiform(M)
average

)                                        (14a) 

 

Rnonuniform(N)
max

=max(Rnonuniform(N)
average

)                               (14b) 

 

where the function max(.) computes the maximum value of the argument 

provided. The optimal value of M, Mop was then selected from Runiform(M)
sd

 and 

Runiform(M)

average
. A value of M was chosen at the instance where Runiform

max
 is maximum 

and Runiform
min

 is minimum. The same process was repeated in selecting the 

optimal value of N, Nop. This led to the computation of Rnonuniform
max

 and 

Rnonuniform
min

. The corresponding images for the illumination invariant for both 

uniform and non-uniform cases were computed. Equations 15 and 16 are 
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mathematical expressions that convert the optimal values of Mop and Nop to 

images. 

 

Runiform(Mop)=
1

1+ (
Mop

R+eps
)

4                                       (15) 

 

Rnonuniform(Nop)= 
1

1+ (
2.25

(R+eps)
Nop

)

                                    (16) 

 

The average value of Runiform(Mop), Runiform(Mop)

average
 and Rnonuniform(Nop), 

Rnonuniform(Mop)

average
 were also determined. Finally, either of Runiform(Mop) or 

Rnonuniform(Nop) was selected based on the highest value of either of  Runiform(Mop)

average
 

or Rnonuniform(Mop)

average
, which is mathematically described in Equation 17. 

 

Rselected=

{
 
 

 
 Runiform(Mop),

R
uniform(Mop)

average

Rnonuniform(Nop)
average >1

Rnonuniform(Nop),
R

uniform(Mop)

average

R
nonuniform(Nop)

average <1

                              (17) 

 

2.3 Face Recognition and Performance Evaluation Stage 

 

This is the last phase of the study as shown in Figure 1. In this subsection, a 

deep convolutional neural network was designed and trained to recognize the 

processed images obtained using the various image processing techniques 

used that formed the foundation of this study. Similarly, a deep convolutional 

neural network was designed and trained to recognize the processed images 

obtained using the developed ACS algorithm. The interactive MATLAB® 

deep learning toolbox (Mathworks, 2017) was used to implement this module 

with a learning rate of 0.0001 and a maximum epoch of 10. It is also worthy 

to note that the specifications of the Windows 8 machine used for the 

implementation are 64-bit operating system, installation memory of 4.00 

gigabyte and processor designation of Intel® Celeron® CPU N3050 with a 

speed of 1.60 GHz. After the training, the face recognition accuracies of the 

dataset was obtained by testing the network using the testing sets per subset. 

The activities in this module are presented in the succeeding sections. 
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Recitified Linear Unit (ReLU) Layer

Image Input Layer

2-D Convolutional Layer

Batch Normalization Layer

Max Pooling Layer

Fully Connected Layer

Soft-max Layer

Classification Layer

2.3.1 Train a DCNN 

 

In this sub-stage, the applicability of deep convolutional neural network, also 

known as deep learning for the face image classification problem considered 

in this work was evaluated. The deep learning architecture utilized in this 

study consisted image input layer, 2-D convolutional layer, rectified linear 

unit (ReLU), max-pooling layer, fully connected layer, soft-max layer and 

classification layer. Figure 5 illustrates the architecture adopted in this study. 

Brief information on each layer of the DCNN architecture employed is shown 

below. 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 5. The utilized DCNN architecture 

 

The first layer of the DCNN was the image input layer. In this layer, the image 

data were acquired and the above previous operations were implemented to 

produce the image information that would be processed. The 80% of the 

images were used in training the neural network while the remaining 20% 

were used in classification. The sizes of the image used in this layer were 

consistent in order to level hyper-parameters when going deep down the 

DCNN layers. The size of the final processed face image after passing through 

the ACS algorithm was 200 × 200. This image was then passed to the 

convolutional layer for further processing. 

 

In the 2-D convolutional layer, a mask of size 2 × 2 was used (Havaei et al., 

2017). Using the mask, the convolutional operation was implemented by 

adding the multiplication of each element of the mask mapped to the 

corresponding elements in the local neighbourhood as described earlier. A 

total of 10 filters of size 3 × 3 with randomly generated kernel weights were 

used in the same region of inputs. 
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The ReLU layer serves as an activation of the output of the convolutional 

layer. In this layer, each element in the output of the convolutional layer were 

replaced by the maximum of ‘0’ and the value of the element – that is, all 

negative pixel values are replaced with ‘0’ and positive pixel values are 

retained (Nair and Hinton, 2010). Mathematically, the function of the ReLU 

Layer is represented in Equation 18. 

 

RReLU(i,j)= max(0,Rcon(i,j))                                (18) 

 

where Rcon(i,j) is the output pixel value of the convolutional layer and RReLU(i,j) 

is the output value after applying the ReLU filter. 

 

As mentioned previously, the max-pooling layer further reduces the 

dimension of the image layer by finding the maximum of all the element 

within the N × N local neighbourhood. This layer carries out a non-linear 

down sampling operation after the convolutional layer is passed through the 

ReLU activation function (Mathworks, 2017). In this work, a filter of size 3 × 

3 with a stride of three was chosen for the max-pooling layer. Equation 19 

defines mathematically the max-pooling operation applied. 

 

Rmp=max(pixel elements in a neighborhood)                     (19) 

 

where Rmp is the corresponding output and max(.) is a function that computes 

the maximum value of pixel elements in a neighbourhood. 

 

The fully-connected layer (FCL) output a column vector of k dimensions 

where k is the number of possible classes predictable by the network. This 

vector contains the probabilities for each class of any image being classified. 

In this study, all part of the neurons were interconnected to form the single 

vector that was be used in predicting the trained network. 

 

Following the FCL is the soft-max layer. The soft-max layer provides the soft-

max activation function for a multi-class classification problem. The soft-max 

activation that was used in the study is defined by Bishop (2006) and is 

expressed in Equations 20 and 21. 

 

p(Cr|x)= 
p(x|Cr)p(Cr)

∑ p(x,Cj)p(Cj)
k
j=1

= 
exp(ar)

∑ exp(aj)
k
j=1

                        (20) 

 

ar=In(p(x|Cr)p(Cr)                                     (21) 
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where p(Cr |x) = 1 and p(Cj |x) = 0. p(x |Cr) is the conditional probability of 

the sample given class r, and p(Cr) is the class prior probability. 

 

The final layer is the classification layer. This layer uses the probabilities 

returned by the soft-max activation function for assignment to one of the 

mutually exclusive classes. 

 

 

 

3. Results and Discussion 

 

3.1 Recognition Accuracies using Different Algorithms 

 

This subsection presents the result of the recognition accuracies of the seven 

algorithms developed as shown in Figure 6. The figure illustrates the 

recognition accuracies obtained after processing the datasets retrieved from 

the extended Yale face database B. The result of the preprocessing accuracies 

shows that the raw image data performed poorly with an accuracy value 

ranging from 10 to 57%. On the contrary, the anisotropic diffusion filter 

(ADF) algorithm performed satisfactorily well with accuracies that are above 

90% for subsets 2, 3 and 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Recognition accuracies using different techniques 

 

However, the percentage recognition for subset 1 is less than 90%, which is 

comparable with the recognition rate of the gradient faces algorithm on the 

same subset. All other algorithms performed relatively low on all the image 
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subsets when compared with ADF. This result buttresses the finding of 

Animasahun and Popoola (2015) stating that adopting the application of 

appropriate preprocessing technique usually enhances the recognition 

potential of the face recognition pipeline. 

 

3.2 Image Entropy for UCI Scenario 

 

In the developed ACS algorithm, face information of the training data were 

obtained and represented in terms of the image entropies. Figures 7 illustrates 

the relationship between the average entropy and M-values and the standard 

deviation of entropies and M-values specifically for the uniform contrast 

improvement scenario which forms a huge part of the ACS algorithm. Figure 

7a shows a steep increase in the average entropy (which measures the 

randomness of the features in the image data) as the M-values increase and 

thereafter, a gradual depreciation in the average entropy with respect to the M-

values. Conversely, Figure 7b initially shows a gradual decay of the standard 

deviation of the entropies and later, a gradual decay of the standard deviation 

of the entropy with an increase in M-value. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Variation of average entropies (a) with M Variation of the standard 

deviation of entropies (b) for each value of M  

 

In Figure 7a, when the M-value is 1, the entropies of the image samples 

recorded a greater value of 7.1 which is 1.1 times greater than the lowest 

scoring value of M. When compared with the Figure 7b of the same M value 

considered previously, the entropies for the training sets are relatively 

consistent with negligible variations – evident in the value of the lower value 

of the standard deviation of the entropy when M is 1. However, the standard 

deviation of the entropy at values of M other than 1 is seen to increase linearly. 

This behavior implies that a single representation can be used to compute 

(a) (b) 
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similar Runiform of each image sample when the M-value is set at an optimal 

value of M in the case of the UCI scenario.  

 

3.3 Image Entropy for NCI Scenario 

 

For the NCI scenario, the average entropy values obtained were similar to 

those obtained in the UCI. However, the standard deviation of the entropies 

exhibited a strange variation in the values obtained. Figure 8 illustrates both 

the average entropy and its standard deviation. 

 

It can be observed in Figure 8a that the best average entropy was achieved at 

an M-value of 1. This implies that more information can be obtained from the 

face image at values of M. Besides, an M-value of 0.8 exhibited the same 

average entropy value as when M is 1. In comparison, the standard deviation 

of the entropy at an M-value of 0.8 is greater than that obtained when M-value 

is 1. Hence, an M-value of 1 is still the optimal value. Arguably some other 

values of M may exhibit lower variation in entropies. However, they exhibit 

lower average values. The variation of the image entropy of the image dataset 

with the value of M further supports the claims of Sabuncu (2006) that image 

entropy varies closely with the quality of the image. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8. Variation of average entropies (a) with M variation of the standard 

deviation of entropies (b) for each value of M 

 

3.4 Recognition Accuracies after Implementing the Full ACS Algorithm 

 

In order to validate the hypothesis in the previous subsections where the UCI 

and NCI scenarios were considered in the developed ACS algorithms, a 

parametric sweep was carried out for each M-value on the UCI and NCI 
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algorithm in each subset. Different recognition accuracies were obtained from 

different M-values. The variation of the recognition accuracies for each M-

values are depicted in Figure 9. 

 

 
 

Figure 9. Determining the optimal value M-Value for maximum recognition accuracy 

 

The obtained recognition accuracy for face images in subset 1 is 98% for both 

M-values of 0.8 and 1.0. Similarly, for the same M-value, the recognition 

accuracy for subsets 2 and 4 seems to overlap at an accuracy of 94%. Subset 

3 attained an accuracy of 95%. This implies that at an M-value of 1, optimal 

performance for all subsets were achieved. This further validates the principle 

established using the previously outlined UCI and NCI scenarios in the 

developed ACS algorithm. 

 

3.5 Experimental Analysis 

 

Since the optimal M-value was chosen for both the UCI and NCI scenarios, 

then an experiment was done in comparison with other preprocessing 

algorithms used in the subsection 2. Figure 10 shows the recognition 

accuracies obtained from each preprocessing technique including the ACS 

algorithm with optimal value of M. Also, the pictorial representation of the 

some face image samples preprocessed using the developed ACS algorithm is 

shown in Figure 11. 
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Figure 10. Recognition accuracies using other techniques and the  

developed ACS algorithm 

 
 

 

 

 
 

Figure 11. Some face samples obtained after implementing the ACS algorithm 

 

The optimal ACS algorithm yielded a recognition accuracy in subset 1 that is 

greater than the corresponding accuracy of ADF for the same subset by a 
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factor of 10% (Figure 10). A difference of 2% was attained for subsets 1 and 

2 using the ADF and ACS techniques. For subset 4, the optimal ACS 

algorithm demonstrated a recognition accuracy that is 4% greater than the 

recognition accuracy of the ADF technique. Furthermore, the average 

recognition accuracy using the ACS algorithm was 2.5% greater than the 

recognition accuracy obtained when the ADF technique was used. This fact is 

further buttressed by Figure 11 which shows the face image samples extracted 

from the extended Yale face database B whose illumination variation has been 

significantly normalized. Overall, the developed ACS algorithm offered a 

better performance among other state-of-the-art algorithms considered in the 

literature. 

 

 

 

4. Conclusion and Recommendation 

 

In this study, a new technique called the ACS was developed and implemented 

in addressing the problem on varying illumination in face recognition systems. 

The extended Yale face database B was used to validate the developed ACS 

algorithm. In comparison with other state-of-the-art techniques, the ACS 

algorithm performed satisfactorily in preprocessing the face samples obtained 

from the database. This was evident when a DCNN pipeline was employed to 

measure the accuracy of recognizing face images for different subset 

classifications in the dataset obtained from the extended Yale face database B. 

It was found out that the ACS algorithm to a large extent outperformed other 

algorithms considered in this study with an accuracy ranging from 94 to 98%. 

However, the execution time of the algorithm was unideal for real-time 

deployment in face recognition systems. Hence, future work should done to 

improve the overall implementation speed of the algorithm, which could 

engender its application in real-time face recognition systems.  
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