
Mindanao Journal of Science and Technology Vol.12  (2014) 1-11 

 
 

Middleware-based Database Server Allocation  
of Distributed Database on PC Cluster Systems  

  
Junar A. Landicho* and Consorcio S. Namoco, Jr. 

College of Industrial and Information Technology 
Mindanao University of Science and Technology 

Cagayan de Oro City, 9000 Philippines 
*junar_landicho@yahoo.com 

 
Date received:  June 01, 2013 
Revision accepted: January 15, 2014 

___________________________________________ 

Abstract 
 
The study seeks to provide a distributed database using the Middleware-based 
Database Server Allocation (MDSA).  The MDSA allocates available servers to 
cluster computers and search for the best cluster that caters to a query. There were 
eight experiments performed  using MDSA and were compared to the sequential and 
random search method, which include controlled CPU utilization and random CPU 
utilization in terms of access time, single query and multiple queries. Experimental 
results showed that with MDSA, there is a reduction of data response time under 
varying number of nodes, ranging from 1 to 8 clustered servers. 
 
Keywords: database, distributed database, middleware, PC cluster 

 

1. Introduction 
 
A distributed database is a collection of databases that can be stored at 
different computer network sites.  Distributed Database Management System 
(DDBMS), on the other hand, is a software that manages a distributed 
database while providing an access mechanism that makes the distribution 
transparent to the users (Silberschatz et al, 2006). Figure 1 shows the sample 
of distributed data and distributed processing. 

In Personal Computer (PC) clustering system, the distributed data 
environment approach is used where the information will be decomposed 
into smaller pieces and then distributes them to be stored on several data 
storage nodes in the cluster computer systems. Those cluster computers are 
connected together as a high performance computer. The DDBMSs will 
handle those pieces of data as one unit. Users do not need to know where 
exactly the data will be stored on cluster nodes (Amiri, 2004; Johnson and 
Anthes, 2003; Brown et al., 2007).  



J. A. Landicho & C.S. Namoco, Jr. / Mindanao Journal of Science and Technology Vol. 12 (2014) 1-11 

2 
 

 

Figure 1. Distributed data and distributed processing 
 
Figure 2 shows the sample of design in PC cluster system in distributed data 
approach. There are several advantages of this approach which include 
higher processing performance, more memory capacity, higher network 
bandwidth and higher I/O bandwidth. There are also several storage nodes; 
each storage node will handle their own pieces of data in parallel. 
Furthermore, each of them has its own network interface card that handles 
network bandwidth. The best case of network bandwidth can improve the 
system by the product of the number of storage nodes and bandwidth of each 
network interface. 

 

 
 

Figure 2. PC cluster system in distributed data approach 

 
In this approach, it is more efficient to use a middleware that can allocate the 



J. A. Landicho & C.S. Namoco, Jr. / Mindanao Journal of Science and Technology Vol. 12 (2014) 1-11 
 

3 
 

available servers among the clustered computers, and offers the best cluster 
to serve for a query. A middleware is a software that mediates between an 
application program and a network. It manages the interaction between 
applications across heterogeneous computing nodes. Using middleware for 
distributed database improves the query processes, increases the portability 
of the queries, and improves the system maintenance and reliability. The 
middleware can also provide fault-tolerant control among the clustered 
servers (Pukdesree et al., 2010; Oracle Corp., 2010) 
 
This study is intended to design an efficient tool to help achieve an effective 
system through the distributed database on PC clustered systems. 
 
Figure 3 shows the middleware-based database server allocation diagram. 
First, the middleware-based database server allocation accepts connections 
from the clients. All the connections are done using Transmission Control 
Protocol / Internet Protocol (TCP/IP). It is one of the protocols of the 
Internet Protocol suite.  
 
 

 
 

Figure 3. Middleware-based database server allocation diagram 



J. A. Landicho & C.S. Namoco, Jr. / Mindanao Journal of Science and Technology Vol. 12 (2014) 1-11 

4 
 

Using TCP/IP, applications on network hosts can create connections to one 
another, over which they can exchange data. The protocol guarantees reliable 
and order delivery of sender to receiver data. The connections are done in a 
First in First out (FIFO) manner. The first client to connect to the 
middleware is the one who will connect first to the clustered server. Next, 
the middleware will choose a clustered server through an IP address. Every 
server has an IP address which is unique. The client has a unique IP address 
in order for the server to determine the source address. After choosing a 
clustered server, the middleware tries to connect to it. If the server will 
respond, it means that it is available. The middleware will then get the 
Central Processing Unit (CPU) utilization of each clustered server (CS). The 
CPU utilization is the basis for determining whether the CS is busy or not. 
The CS that has the highest CPU utilization is considered as busy while the 
CS that has lowest CPU utilization means less query process. When the 
middleware can find the CS that has lowest CPU utilization, the middleware 
will forward the IP address of the CS to the client. The client will now 
establish a connection to the CS using the TCP/IP and MySQL Cluster.  
Then the client sends the query to the CS. The CS processes the request and 
sends back to the client. A process is an executing program that performs 
some useful operation of data in a computer. After processing and sending 
back the request to the client, the middleware will close the connection of the 
client and CS. Every time the client requests to the clustered servers, the 
middleware will find first among the clustered servers one that has lowest 
CPU utilization. 
 
 
 
2. Methodology 
 
2.1 Network Model 
 
The network model used for MDSA is shown in Figure 4. The model 
includes connectivity (topology), bandwidth and number of PC used. Each 
CS was limited to three PC for the purpose of evaluation and minimum 
requirements in creating MySQL Cluster Architecture. 
 
2.2 Database Cluster Model 
 
In this study, each MySQL Cluster database was split over 3 Ubuntu 
machines  having  these  characteristics:  (a) 2 hosts with each running 1 data  



J. A. Landicho & C.S. Namoco, Jr. / Mindanao Journal of Science and Technology Vol. 12 (2014) 1-11 
 

5 
 

 
 

Figure 4. Network model of MDSA 
 

 
node; (b) 3rd host running management node and; (c) 3 hosts running 
MySQL Servers. This is shown in Figure 5. 
 
 

 
 

Figure 5. Database cluster architecture model 



J. A. Landicho & C.S. Namoco, Jr. / Mindanao Journal of Science and Technology Vol. 12 (2014) 1-11 

6 
 

2.3 Hardware Requirements 

The MDSA proposed in this study used twenty-four computer workstations. 
The specifications of each computer are a single Intel Atom CPU D410, 2 
GB MHz of RAM, 200 GB-SATA II of hard drive and on boarded 100 Mbps 
of network interface. All computers were connected using one 100 Mbps 
twenty-four-port switching hubs. The system is a closed system that prevents 
other factors from affecting the results of the experimental. Although the 
computers used in setting up the system did not have high-end specifications, 
it did not affect the functionality of the system. In the distributed data 
approach, the network bandwidth is a very important factor that will affect 
the results of the experiment. The standard bandwidth speed for most PC 
was 100 Mbps and UTP cable specifically CAT5e that has maximum 350 
Mbps of network capacity. The system proposed in this study used CAT5 
and CAT6 or CAT7 that has 550 Mbps.  
 
2.4 Software Requirements 
 
Ubuntu Linux 10.0 was used for the operating system, since it is the most 
reliable, potential, stable and secure operating system (OS). The proposed 
system has not been tested on other open source OS such as fedora or 
FreeBSD. Ubuntu 10.0 also provides support for their customers via 
subscription patches or packages that can also update via internet. Hence, the 
system administrator can fix or upgrade the system software. In this study, 
MySQL Cluster 7.0 was used as distributed DBMS which is the latest 
version at that time. MySQL Cluster 7.0 provides many advance features as 
enterprise DBMSs such as HA or online duplication of database. The 
required packages were only installed on each type of MySQL Cluster 
components, for example management node, SQL node and storage nodes. 
MySQL Cluster supports both disk-based and in-memory database. This 
study used in-memory database approach that performs better and faster 
compared to disk-based approach. MySQL Cluster 7.0 also supports up to 
eight threads in parallel, that is very suitable for present processor's multi-
thread or multi-core era. 
 
2.5 Algorithm for MDSA 

Flowcharts are often used to represent algorithms as shown in Figure 6. This 
algorithm is meant to connect the nodes in the available server through 
MDSA. 



J. A. Landicho & C.S. Namoco, Jr. / Mindanao Journal of Science and Technology Vol. 12 (2014) 1-11 
 

7 
 

 
 

Figure 6. A flowchart showing node connects to server using MDSA 
 
 
2.6 Search Methods 
 
Three search methods were used to determine which of the CSs would 
receive any given request. In the sequential method, the requests followed a 
set sequence such as CS one, then CS two, then CS three, then CS four, until 
it reached to the last CS then back to one. The random method used a 
random number generator to select a CS randomly from the pool of CSs. It is 
hoped that if the number generator was truly random, the work load would 
get evenly distributed. The MDSA method monitors the OS on each 
potential CS node to ascertain its current load in real time. CSs under heavy 
loads, which were unable to report in a timely interval, were assumed to be 
at 100% utilization and busy. Selection was based on the lowest utilization 
currently reported. 

 
2.7 Performance Evaluation 

Effective evaluation of MDSA uses different scenarios. There are two major 
setups for the evaluation, CSs during controlled CPU utilization and CSs 
during random CPU utilization. Both CPU utilizations used three search 



J. A. Landicho & C.S. Namoco, Jr. / Mindanao Journal of Science and Technology Vol. 12 (2014) 1-11 

8 
 

methods, such as sequential method, random method and MDSA. In 
controlled CPU utilization, a specific CS determines which has lowest CPU 
utilization. In random CPU utilization, each method does not have the same 
CS which has lowest CPU utilization. 

The methods mentioned above were evaluated through response time in 
accessing the CSs, response time in assigning single query to the specific CS 
and response time in assigning multiple queries to the specific CS. The 
system was tested and evaluated in a single run having twenty-five PC, 
where twenty-four for cluster nodes and one for a client. 

 
 
3. Results and Discussion 
 
3.1 The MDSA 
 
Screenshots were taken after determining the response time in different 
sample test. Figure 7 shows the CPU Utilization of each CS. It displays 
which CS has the lowest CPU utilization and is connected to the Clustered 
Server. 
 
 

 
Figure 7. A screenshot showing the lowest CPU utilization in PC cluster 

 



J. A. Landicho & C.S. Namoco, Jr. / Mindanao Journal of Science and Technology Vol. 12 (2014) 1-11 
 

9 
 

3.2 Percentage Time Difference on MDSA as Compared to Sequential and 
Random Search Method Controlled CPU Utilization 
 
Table 1 and 2 show the percentage time difference on MDSA as compared to 
sequential and random search method during controlled CPU utilization and 
random CPU utilization, respectively. In general, the MDSA appears more 
efficient compared to sequential method and random method in terms of 
access time, single query and multiple queries.  
 
 

Table 1. Percentage time difference on MDSA as compared to sequential and random 
search method during controlled CPU utilization 

 

No. of 
Servers 

Access Time Single Query Multiple Queries 

With 
Respect to 
Sequential 

Method 

With 
Respect to 
Random 
Method 

With 
Respect to 
Sequential 

Method 

With 
Respect to 
Random 
Method 

With 
Respect to 
Sequential 

Method 

With 
Respect to 
Random 
Method 

1 -1.692  -2.098 32.034  2.417 18.116 31.878 

2 49.252  -1.597 50.153  8.805 53.745   5.878 

3 66.189 49.351 67.440 53.819 45.878 31.090 

4 74.994 50.100 74.920 29.661 67.309 34.879 

5 79.976 49.950 78.299 77.984 80.328 86.894 

6 83.056 74.544 77.409 66.618 80.931 79.147 

7 85.576 -0.997 80.588 72.126 84.309   2.052 

8 87.593 49.950 82.140 48.913 87.533 80.340 
 
 
In access time, the MDSA has the lowest delay back in accessing clustered 
servers. With the increase of the numbers of CSs, there is an increase of 
delay in the response time using sequential method. Although the random 
method resulted in the desired decreasing linear pattern, it was not as 
pronounced as with the MDSA method. 
 
The results of the single query process are similar to access time. At first CS, 
both random and MDSA share similar characteristics. The random method 
shows erratic results. It is the effect of random CPU utilization in every CS 
and random selection in connecting CS. The sequential method appears to 
deliver a nonlinear trend result which depicts a higher return on response 
time for each additional CS. 



J. A. Landicho & C.S. Namoco, Jr. / Mindanao Journal of Science and Technology Vol. 12 (2014) 1-11 

10 
 

Table 2. Percentage time difference on MDSA as compared to sequential and random      
search method during random CPU utilization 

No. of 
Servers 

Access Time Single Query Multiple Queries 
With 

Respect to 
Sequential 

Method 

With 
Respect to 
Random 
Method 

With 
Respect to 
Sequential 

Method 

With 
Respect to 
Random 
Method 

With 
Respect to 
Sequential 

Method 

With 
Respect to 
Random 
Method 

1  -0.200   2.432 42.928  31.453 31.368 15.345 

2 49.950 49.900 41.001  18.270 52.819 40.372 

3 66.589   0.000 53.697 -61.079 58.138 67.128 

4 74.919 66.556 68.006  37.607 72.859 32.351 

5 49.950 79.980 69.130  69.396 47.460 36.991 

6 74.919 74.919 40.047  63.768 70.426 56.211 

7 85.698 79.952 74.435  70.114 72.968   6.340 

8 87.332 -1.096 81.051  62.572 86.086 82.062 
 
 
In multiple queries, the MDSA always has the lowest response time from 
one to eight CSs as compared to sequential and random method. However, 
the random method has similar characteristics in lower delay in several CSs. 
The sequential method result is gradually increasing the delay of response 
time as the number of CS increases. 
 
In general, the MDSA returns a higher percentage time difference over 
sequential and random method as CS increases . However, there are a 
number of CS setups where the random method delivers a lower delay in the 
response time as compared to MDSA in access time and single query. On the 
other hand, it should be noted that MDSA appears better when multiple 
queries are used. 
 
 
4. Conclusion and Recommendations 
 
Using the MDSA method and moving from one CS to eight CSs under a 
controlled CPU utilization, there is a decrease in delay of response time.  
The  average delay increases from 18% to 87% switching from the MDSA to 
the sequential method, and by 2% to 87% when switching to the random 
method.  
 



J. A. Landicho & C.S. Namoco, Jr. / Mindanao Journal of Science and Technology Vol. 12 (2014) 1-11 
 

11 
 

In random CPU utilization, the MDSA method is more efficient as compared 
to sequential and random methods.  Setting from one up to eight CSs, and 
switching from the MDSA to the sequential method, the average delay 
increases from 31% to 87% and when switching to the random method, the 
average delay increases from 2% to 86%. 
 
With the help of MDSA, there is a decrease in the delay back to distribute 
requests to a given distributed database node to the originating client. 
 
Clearly, the MDSA method has outperformed the random and even the 
sequential method.  Possible enhancements to the MDSA might include the 
following methods: (1) doubling the CSs from eight to sixteen, each serving 
different applications, and dynamically allocating CSs to web server 
applications as needed, then releasing the CSs to the other allocation server 
when load increases as web client demand increases, (2) increasing the 
number of nodes each CSs from 3 to 20 nodes in running the MDSA method 
and testing random and controlled utilization, (3) increasing the number of 
clients from 1 to 50 in accessing each CSs, and (4) use more complicated 
queries that may test the processing time of MySQL Cluster. 
 
 
5. References 
 
Amiri, A. (2004). A Coordinated Planning Model for the Design of a Distributed 
Database System. Information Sciences, Volume 164. Numbers 1-4. pp. 229-245. 
 
Anthes, G. (2003).  Grids Extend Reach, Computerworld, pp. 29-30. 
 
Brown, C., Guster, D. and Krzenski, S. (2007). Can Distributed Databases Provide an 
Effective Means of Speeding Up Web Access Times, Journal of Information 
Technology Management. Volume XVIII, Number 1.  pp. 1-15. 
 
Johnson, M. (2003). Gridlock Reality, Computerworld, p 24. 
 
Oracle Corp., (2010). MySQL Cluster for Web and E-Commerce Applications: 
Growing Revenues and Enhancing Customer Loyalty 
 
Pukdesree, S., Lacharoj, V. and Sirisang, P. (2010). Performance Evaluation of 
Distributed Database on PC Cluster Computers using MySQL Cluster. Proceedings 
of the World Congress on Engineering and Computer Science 2010. Volume I. 
  
Silberschatz, A., Korth, H.F., and Sudarshan, S. (2006). Database System Concepts. 
Fifth Edition. New York, NY: McGraw Hill. 


