
Mindanao Journal of Science and Technology Vol.10 (2012) 63-80

A Program Visualization Approach in Developing an

Interactive Simulation of Java Programs for Novice

Programmers

Aurora Cindy G. Agno-Balabat

1*
and Jay Noel N. Rojo

2

1College of Information Technology

Liceo de Cagayan University

Rodolfo N. Pelaez Boulevard, Cagayan de Oro City, 9000 Philippines

*cindy_agno@yahoo.com

2College of Industrial and Information Technology

Mindanao University of Science and Technology

CM Recto Ave., Lapasan, Cagayan de Oro City, 9000 Philippines

Date received: July 17, 2012

Revision accepted: November 03, 2012

Abstract

It is widely agreed that learning to program is extremely difficult. Beginning

programmers tend to have serious difficulties in grasping the abstract concepts and

notations that programming involves.To become an expert in programming, it

requires a deliberate practice and the ability to comprehend a computer program, so

to establish a valid mental presentation of the problem solved by the program.

Because of the lack of knowledge and experience, novice programmers have

problems with constructing the viable models of problems.

In this study, program visualization was designed meant especially to aid novice

programmers in Java language. It visualizes the data and control flow of the

program. The program visualization design used a modular approach that permits

both internal and external extensibility, which consist of two systems, a visualization

engine and a Java source interpreter.

Keywords: interactive simulation, program visualization, java programming

1. Introduction

Programming is an exceedingly difficult activity for most beginners.

Lecturers have introduced many ways to assist their own lecturing and to

help students to acquire new knowledge in these fields. The learning aids

have varied from paper, pen and scissors to the static images on the slides.

However, it appears most natural to illustrate the program’s execution over

A.C.G. Agno-Balabat & J.N.N. Rojo / Mindanao Journal of Sci. and Tech. Vol. 10 (2012) 63-80

64

time with an animation. Thus, for the last couple of decades the software

visualization has been an active field of study (Baecker, 1981; Hundhausen

et al., 2002).

When considering the possibility to produce a visualization of a program, it

may appear that the visualization is a superior way to illustrate their

behaviour. Software is commonly visualized in an attempt to facilitate

program comprehension and support software engineering activities.

Studies have shown that a number of visualization software have been

developed in previous years. One of the first and most renowned systems to

teach introductory object-oriented programming is BlueJ (Kölling et al.,

2003; BlueJ, 2003). The key feature of the system is the static visualization

of the class structure as a Unified Modeling Language (UML) diagram.

Furthermore, it allows the learner to interact with the objects by creating

them, calling their methods and inspecting their state with the easy use

menus and dialogs. However, it does not provide any dynamic visualizations

of the program, which is the purpose of this study.

There are two versions of the same system, namely Javavis (Oechsle and

Schmitt, 2002) and Jvisual (Birkheim, 2002), developed on top of the Java

Debugging Interface (JDI) to obtain information about the runtime behaviour

of the program. They visualize the state of the program and its changes

during execution. These systems are not meant for real novices, because the

visualization they produce expects the students are familiar with UML and

the basics of programming. However, this kind of system could be very

useful for advanced courses in programming.

JIVE-Java Interactive Visualization Environment (Gestwicki and Jayaraman,

2002), features interactive visualization; query based debugging and reverse

stepping. The program execution is visualized by means of sequence

diagrams which display calls from method to method and using object

diagrams which display the ―use‖ relations between objects and class

hierarchy as contours. The visualization uses data gathered at run-time. But

the code itself is not visualized, and neither is the data visualized.

Jeliot 2000 (Ben-Bassat Levy et al., 2003) is a stand-alone Java application,

which has a simplified user interface. The animation show both the control

and data flow. The design is based on the idea that visualization of the

program is actually a consequence or a side-effect of the interpretation of the

program. This means that the program is no longer first compiled to

annotated source code and then to a program, but is directly interpreted with

A.C.G. Agno-Balabat & J.N.N. Rojo / Mindanao Journal of Sci. and Tech. Vol. 10 (2012) 63-80

65

a Java interpreter. However, it only supports a relatively small subset of Java

language and does not support object-oriented programming.

iC++ (Ang and Sioson, 2009) , developed a visualization tool to help novice

programmers in understanding variable declarations, assignment statements

and the three basic program structure namely : sequence, selection, and

repetition. However, the systems only visualize the state of the memory

variables in the computer’s main memory as each C++ statement in a

program fragment executes.

There are also several pedagogical environments that help the novice

students to overcome problems in compiling and debugging, the software

Dr.Java (Allen et. al., 2002; Stoler, 2002) is one of them. It is not a software

visualization tool; however it is mentioned here due to the usage of

DynamicJava, a Java source interpreter which is also used in this study. It is

elegantly employing the features of DymanicJava to help students to interact

with self-written classes by creating objects and executing separate

statements on them easily. The read-evaluate-print loop is introduced into

Java teaching, which means that students do not have to write complete

program before they can test the programs but they can evaluate each line of

code separately. Because of the integrated interpreter, students do not have

to compile the program with standard Java compiler that could introduce

different kinds of problems.

Some of them share a similar kind of architecture and used an approach that

the user code was translated to the closest programming language (i.e. Eliot-

C was transformed to C++ and EJava to Java) and then compiled with a

standard compiler. This made the framework stable and the visualization of

programs semiautomatic but restricted the abstraction level of the

visualization by only visualizing the variables of the programs. There were

two problems in the design. Firstly, the interpreter and the visualization

engine were strongly coupled, which meant that modifications to the

visualization of the programs would lead to modifications in the interpreter.

Secondly, the used interpreter was hand-crafted and its further development

would have taken much effort.

The study aims to build an engaging interactive learning tool for novice

programmers at that focuses on unit-level Java programming.

Thereby, this study focuses on the development of a system that involves the

new kind of approach in visualization. The following are the specific

objectives of the study: (1) to design visualization software in a modular

A.C.G. Agno-Balabat & J.N.N. Rojo / Mindanao Journal of Sci. and Tech. Vol. 10 (2012) 63-80

66

approach which means that an independent interpreter will be used and a

separate visual engine as well; (2) to implement the visualization software in

a prototype that should support the visualization of as large a subset of

programs written in Java language as possible. For portability and animation,

the system will be implemented with an object-oriented language such as

Java 2 Software Development Kit (J2SDK) and Dynamic Java and; (3) to

test the prototype’s functionalities and verify that the prototype performs and

functions correctly according to its design and specifications.

2. Methodology

The program visualization software requires two separate modules:

interpretation and visualization of java programs. On one side, an open

source Java interpreter that processes the user program. On the other side, a

visual engine creates respective animation of the program interpretation. To

connect both parts, an intermediate code was used.

The intermediate code would produce the textual representation of a running

program, or a program trace. It not only describes the changes in the

variables, as a normal Java debugger would do, it also details the operations

that produce those changes and keep a history data of it. All this information

is required, to animate every step in the execution of a program.

The model of Stratton (2001) is the most similar when the program code and

its interpreter are considered the visualization target, the intermediate

presentation the program visualization meta-language, intermediate

presentation interpreter the mapping declarations and the visualization

engine the visual display. The difference is that instead of using a debugger

an interpreter is use as the visualization target.

It has also a similar design with Domingue et al. (1992) in which the

program code is run and history data is collected from it. The system uses

the interpreter to run the code and extracts history data in the form of the

intermediate presentation. This history data is then visualized with a

procedure that differs in the design but in any case has a similar kind of an

approach. The main difference is that the system is designed to work only

on-line meaning that visualization is done during the interpretation, whereas

in Domingue et al. designed seems to visualize the program history data

after the whole program is executed making it more post-mortem. With the

A.C.G. Agno-Balabat & J.N.N. Rojo / Mindanao Journal of Sci. and Tech. Vol. 10 (2012) 63-80

67

similarities been discussed above, the model can be thought as a hybrid of

the previous models of Domingue et al. (1992) and Stratton (2001).

The model consists of various modules that will eventually interact together

to provide the specific functionality of the entire system. The model structure

of the program visualization software is shown in Figure 1.

Figure 1.Model of the interactive program visualization system

A.C.G. Agno-Balabat & J.N.N. Rojo / Mindanao Journal of Sci. and Tech. Vol. 10 (2012) 63-80

68

1. Select , Write or Edit java source code in the editor

2. The code is sent to the interpreter upon compiling.
2.1. If possible error is encountered

2.1.1. Messages are shown by the user interface upon start of the

visualization.
2.1.2. Go back to step 1

2.2. If there are no errors, the evaluation of the intermediate code is started.

3. Visualize source code in the visualization view area.
3.1. Request highlighting of source code.

3.2. Request variable creation and display in the visualization area.

3.2.1. Request variable image creator to create a variable image.
3.2.1.1. Calls the constructors of the variable image

3.2.1.2. Return the variable image
3.2.2. Display the variable image in the visualization area.

3.2.2.1. Ask for the location of the variable image in the current

method stage
3.2.2.2. Returns the coordinates of the location on the method stage

3.3. Request the variable image declaration

3.4. Returns the variable image declaration
3.5. Request to show the variable image declaration visualization

3.6. Returns control as soon as the visualization has finished

3.7. Binds the variable image to the current method stage.
4. Returns the control back.

5. End

The program visualization software model has the following process: (1)

User Interface and Source Code. The user interacts with the user interface

and creates the source code of the program. (2) Interpreter - The source code

is sent to the interpreter to process the program for interpretation. (3)

Intermediate Code - The intermediate code is extracted during the

execution of the code. (4, 5) Intermediate Code Interpreter - The

intermediate code is interpreted and the directions are given to the

visualization engine. (6-8) Furthermore, the user can give input data, for

example, an integer or a string, to the program executed by the interpreter.

Figure 2 represents the algorithm used in the model upon the visualization of

a java program.

Figure 2. Algorithm of the program visualization

The program visualization prototype is design to supports the following: (a)

Highlight active code such as statements and expressions, (b) Display line

numbering, (c) Run until line features, (d) Data Types –Numbers, Boolean,

Character, String, 1-dimensional Array and Object , (e) Control Flow -

Conditional statement , Loops, Static method calls, Object method calls and

Recursion (f) Operators - unary operators (unary plus, unary minus, and not)

and binary operators. Other constructs not mention above is not supported.

A.C.G. Agno-Balabat & J.N.N. Rojo / Mindanao Journal of Sci. and Tech. Vol. 10 (2012) 63-80

69

In the implementation of the design of the system, to develop interactive

program visualization software, as the ultimate output of this investigation, it

uses the open-source Java programming language.

Since extensibility was raised as one of the key design issues, the program

visualization prototype would consist of two systems, a visualization engine

and a Java source interpreter. DynamicJava is used as the interpreter to

extract run-time information which is then converted into a representation of

the program’s execution in an assembly-like language specially developed

for describing the visualizations.

The program visualization software is prototyped in JAVA programming

language using the IDE Eclipse 3.5.0 – Galileo Edition on at least 800 MHz

Processor that runs in Windows XP format of Operating system.

Figure 3 shows a sample JAVA code for the visualization engine.

A series of tests on the program visualization prototype using several

different type of java program in introductory java programming subjects

was performed.

Figure 3. Sample JAVA code (visualization engine)

A.C.G. Agno-Balabat & J.N.N. Rojo / Mindanao Journal of Sci. and Tech. Vol. 10 (2012) 63-80

70

The evaluation of the performance and functionality of the software followed

to make sure that it meets up the requirement definition based on the series

of tests done. Evaluation of the system was done using a Functional Testing.

In such testing method and approach, it verifies if the system executes the

functions it is supposed to execute.

3. Results and Discussion

Figure 4 shows the user interface structure of the interactive program

visualization software.The interface is being anchored from the Jeliot 2000

interface design which is divided into two main parts. The editing panel

consists of the editor bar. The editor can be found below menu. The text

editor supports syntax highlighting and brace-matching. The editor is

blocked during the visualization. Above the editor is the menu, containing

the menus that control the visualization, whether to start it, pause it, stop it,

or edit it. The right side of the window contains the animation area, all the

visualization occurs there. The visualization area is complemented by a

console terminal that will print out the system output of the visualized

program.

Figure 4.The user interface structure of the program visualization software

Figure 5 shows a sample of a Java language written in the Editor which will

be visualized in the Visualization View.

A.C.G. Agno-Balabat & J.N.N. Rojo / Mindanao Journal of Sci. and Tech. Vol. 10 (2012) 63-80

71

Figure 5. Sample java program written in the editor

The sample program will find and display the average of a set of positive

numbers entered by the user. The average is the sum of the numbers

inputted, divided by the number of inputs. The program will ask the user to

enter one integer at a time as long as the conditional statement returns to

true. It will keep count of the numbers entered, and it will keep a running

total of all the numbers it has read so far until the conditional statement

returns to false.

Figures 6 to 14 show fourteen different phases of program visualization of a

java program. Figure 6 illustrates the beginning of the class allocation.

Figure 6. Class allocation

A.C.G. Agno-Balabat & J.N.N. Rojo / Mindanao Journal of Sci. and Tech. Vol. 10 (2012) 63-80

72

Figure 7 shows the creation of objects and field initialization of sum, count,

n and avg.

Figure 7. Created the object avg

Figure 8 shows the assignment of the users input to field nas its current

value.

Figure 8. Users input for field n value

double sum 0.0

intcount 0

intn ----

double avg -----

A.C.G. Agno-Balabat & J.N.N. Rojo / Mindanao Journal of Sci. and Tech. Vol. 10 (2012) 63-80

73

Figures 9 to 11 show the use of control structure in accumulating the users

input by n times and assigned its value to field sum. Figure 12 shows the

value of count incremented by 1

Figure 9. Test while loop statement

Figure 10. Users input added to the current value of sum

Figure 11. Assigned the value to field sum

A.C.G. Agno-Balabat & J.N.N. Rojo / Mindanao Journal of Sci. and Tech. Vol. 10 (2012) 63-80

74

Figure 12. Increment count value by 1

The result is then assigned to field avg of the value of sum divided by value of n

which is shown in Figures 13 and 14.

Figure 13.Assigned to field avg of the value of sum divided by value of n

Figure 15 shows an example of a Java program that has a syntax error.

Syntax errors are usually typing errors. Misspelled command in Java or

int count ++ 0

doublesum

A.C.G. Agno-Balabat & J.N.N. Rojo / Mindanao Journal of Sci. and Tech. Vol. 10 (2012) 63-80

75

Figure 14.Value of field avg displayed in the console window

Figure 15. Program visualization of a java program with a syntax error

forgot to write to semi-colon at the end of a statement. Java attempts to

isolate the error by displaying the line of code and pointing to the first

incorrect character in that line. However, the problem may not be at the exact

point. Other common mistakes are capitalization, spelling, the use of

incorrect special characters, and omission of correct punctuation. Syntax

errors occur upon the compilation of a java program before the visualization.

If such kind of error occurs the visualization does not take place until

corrected. In the example, shown in the figure, wherein the semicolon was

A.C.G. Agno-Balabat & J.N.N. Rojo / Mindanao Journal of Sci. and Tech. Vol. 10 (2012) 63-80

76

intentionally omitted in one of the statement. The error message displayed in

the Visualization View Area suggests that something is expected in line 6,

displaying a list of possible missing symbols or characters. According to

Ben-Ari (2003), if you encountered a lot of error messages, try to correct the

first mistake in a long list and try to complete the program again. Doing so

may reduce the total number of errors dramatically.

Figure 16 shows an example of a program that has a run-time error. Run-

time errors are errors that will not display until the program will run or

execute the program. Even program that compile successfully may display

wrong answers if the programmer has not thought through the logical

processed and structures of the program. The sample java program is trying

to extract a substring of the string s but the upper index 12 is not within the

string. Executing the program cause an exception to be thrown, thus a

message is displayed in the Visualization Area informing the programmer

that String index is out of range: 12.

Figure 16. Run-time error

The prototype’s functionalities is tested and verified if it has performed and

functions correctly according to its design and specifications using Jubula-

Automated Functional Testing Tool.

The Jubula functional testing tool is based on the premise that automated

acceptance tests are just as important as the project code, and should adhere

to the same best practices (modularity, reusability, and readability) without

requiring that any code be produced. This places the power of testing in the

hands of the testers and improves accessibility for users who may want to

monitor the tests. The code-free approach keeps test maintenance to a

A.C.G. Agno-Balabat & J.N.N. Rojo / Mindanao Journal of Sci. and Tech. Vol. 10 (2012) 63-80

77

minimum and allows acceptance tests to be written from the user

perspective.

Test creation in Jubula is achieved using a library of actions which can be

combined using drag and drop. This library has been successfully used in

diverse projects and already consists of the vast majority of actions

necessary.

Using Jubula can be split into three sections: test creation, test execution and

test analysis.

The software prototype has undergone the three major processes: test

creation, test execution and test analysis. Figure 17 shows the test result of

the program visualization prototype. The test result verifies that the

prototype performs and functions correctly according to its design and

specifications. It is clear that it has satisfied all constraints with no errors

encountered during the entire test execution.

Figure 17. Program visualization - Jubula test result analysis

A.C.G. Agno-Balabat & J.N.N. Rojo / Mindanao Journal of Sci. and Tech. Vol. 10 (2012) 63-80

78

4. Conclusion and Recommendation

In this study, the visualization model and prototype using program

visualization, for interactive java programming simulation is proposed. From

my review of research on teaching introductory programming, it has been

determined the need for an educational tool that specifically targets novices

apparent fragile knowledge of elementary programming which manifests as

difficulties in tracing and writing even simple programs. I therefore conclude

that a tool that tightly integrates programming tasks with visualizations of

program execution and allow novices to practice writing code and easily

transition to visually tracing it in order to locate programming errors would

help address such problem.

Program visualization is a tool with a low barrier to entry that lets

effortlessly transition between writing programs and observing program

behavior with the help of automatically generated visualizations. Using such

tool, novices are better equipped to move on to learning program design and

higher level problem solving skills.

For future work, it is suggested to further enhance the present model to

improve the efficiency of the program visualization software that would not

just cater novice programmers but higher-level as well, catering large subset

of Java programs.

Incorporating visual editor of classes such offered by BlueJ would create a

helpful tool for novices. Integrating the system into a more adaptive

environment would guide novices through their first step in programming.

The material would consist of lessons, corresponding exercises, and

interactive visualization of the examples with audio features. The

environment would be self-adapting in order to cope with the user’s

progress. Visualization would be integrated in a modified environment that

can give more helpful specific descriptive details to errors encountered. In

such enhancements and modifications the shift from novice to expert

programmer would be easier to accomplish.

Lastly, a study of the program visualization software’s effectiveness in terms

of its intended purpose such as the learning impact of the said software to

novice programmers will help spring up many ideas for refinement of its

visualizations and user interactions.

A.C.G. Agno-Balabat & J.N.N. Rojo / Mindanao Journal of Sci. and Tech. Vol. 10 (2012) 63-80

79

5. References

Allen, Eric E., Cartwright Robert and Stroler, Brian (2002). Drjava: A Lightweight

Pedagogic Environment for Java. Sigcse, 137-141.

Ang, Marianne P., Sioson, Allan A. (2009) Enriching Programming Instruction using

Visualization. Philippine Information Technology Journal. Vol.2, Pp. 31-34.

Baecker, Ronald M. (1998) Sorting Out Sorting: A Case Study of Software

Visualization for Teaching Computer Science. Software Visualization: Programming

as A Multimedia Experience, 369-381.

Ben-Bassat Levy, Ronit, Ben-Ari, Mordechai, and Uronen, Pauliina(2003). The Jeliot

2000 Program animation System.Computers &Education,40, 15–21.

Birkheim, Alexander (2002) Automatic Visualization of Java Programs to Be Used In

Thejava Teaching. Master’s Thesis, University of Applied Sciences

Cologne,Cologne, German.

Bluej (2003) Bluej — The Interactive Java Environment.Http:// Www.Bluej.Org

(Accessed 2004-13-02).

Domingue, John B., Price, Blaine A. A., and Eisenstadt, Marc(1992)A Framework

for Describing and Implementing Software Visualization Systems. Proceedings of

Graphics Interface ’92. Canadian Information Processing Society, 53–60.

Gestwicki, Paul V., And Jayaraman, Bharat. (2002) Methodology and Architecture of

Jive. Acm Symposium on Software Visualization.Acm Press.95-104.

Hudson, Scott E., Flannery, Frank, Ananian, C. Scott., Wang, Dan., And Appel,

Andrew W. (1999)―Cup Parser Generator For Java‖,

http://Www.Cs.Princeton.Edu/~Appel/Modern/Java/Cup/, (Accessed 2010-18-02).

Kölling, Micheal And Rosenberg, John (2003) ThebluejSystem And Its

Pedagogy.Journal Of Computer Science Education,13 (4).

Oechsle, Rainer Andschmitt, Thomas (2002). Javavis: Automatic Program

Visualization qith Object and Sequence Diagrams Using the Java Debug Interface

(Jdi). In: Diehl, S. (Ed.), Software Visualization.Lecture Notes In Computer

Science.Springer-Verlag, Vol. 2269, pp. 176–190.

Stratton, David (2001) A Program Visualisation Meta-Language Proposal.In:

Lee,C.(Ed.), Proceedings of the 9th International Conference on Computers in

Education Icce/Schoolnet2001.Soeul, South Korea,601–609.

A.C.G. Agno-Balabat & J.N.N. Rojo / Mindanao Journal of Sci. and Tech. Vol. 10 (2012) 63-80

80

