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Abstract 
 

Sustainable water consumption is considered as one of the key factors for the 

successful management and development of every institution. In selecting the most 

appropriate forecasting technique for an institution, it is necessary to consider not only 

the planning needs but also the balance of the benefits arising from adopting a more 

sophisticated technique against the cost of data acquisition and analysis. However, 

there is a lack of an analytical tool that matches the needs and capability of the 

institution in dealing with multifaceted problems based on the selected criteria for 

water management. In this premise, this study aims to provide an appropriate 

prediction model in the short and midterm of water demand forecasting based on 

institution-specific criteria. There were two steps used to perform decision making in 

selecting the water demand forecasting. First, a multi-criteria decision making 

technique was applied to obtain weights in each criterion and was used in all models. 

Second, each model utilized a 10-fold cross-validation to evaluate prediction models 

by dividing the dataset into a training and a test set. Mean absolute percentage error 

was used to assess the performance of the models. Based on the result, the support 

vector machine was the most preferred model. In the short-term water demand 

forecasting, it only used one variable to predict the water demand. The most preferred 

model was autoregressive integrated moving average. 

 

Keywords: water demand, multi-criteria decision making, decision support system 

 
 

1. Introduction 

 

Water is considered at the core of sustainable development and is essential in 

everyday social and economic activities. The available water resources must 

be reliable and predictable at the place where the user needs to support the 
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services they provide (World Water Assessment Programme, 2015). In any 

institution or organization, having sustainable water consumption is one of the 

critical factors for successful management and achieving goals. However, 

sustainable water consumption and water scarcity are significant challenges 

as the global population increases. These challenges may damage our 

ecosystems, and the distribution of water resources available make it critical 

in many regions. 

 

The cost of water supply has further increased rather than alleviated the 

problem of sustainable water consumption and water depletion (Pfister and 

Ridoutt, 2016). At present, most of the institutions are focused on identifying 

potential gaps between water demand and supply at a future date. These gaps 

can be eliminated by developing a detailed plan that could benefit the 

institution such that guaranteed water supplies are provided to the user, and 

where there is a stable supply for estimated water demands. These plans 

typically include projections of water use based on socioeconomic factors, 

land area use, and other variables that affect water demand. Usually, 

institutions use a demand forecasting method for their planning and 

operational strategy level. 

 

Forecasts can help anticipate potential revenue shortfalls related to usage 

reductions. In the water industry, forecasting is helpful because it can fix costs 

and represent a massive proportion of the overall cost. It also suggests that an 

unforeseen reduction in demand will likely decrease revenues compared to the 

total cost in a short period. Reliable and accurate forecasting is vital so that 

institutions can better plan the building of new infrastructure that will function 

to serve the future demand and avoid the financial burden of capital 

investments and maintenance, and other costs of assets due to failure in 

planning (Sahin et al., 2017). Having accurate forecasts can help utility 

companies avoid budget deficits by more effectively managing costs and rates. 

This is only achievable if the appropriate variables for the development of the 

water demand forecasting model are identified. Haque et al. (2018) suggest 

that these variables must create high intercorrelation with the independent 

variables. 

 

When selecting a forecasting method, a variety of qualitative factors must also 

be considered. These include the purpose and goal of the forecast, ability to 

perform forecasting horizons and periodicities, and availability of data. Other 

approaches to select a forecast model are structured judgment, validation 

sample, and information criteria (Kourentzes, 2016). 
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Identifying the appropriate forecasting model is highly critical and 

significantly influenced by the type of industry. Decision makers are also 

expected to use the most sophisticated and applicable model that would fit the 

organization’s financial capacity. At present, finding an appropriate analytical 

tool that connects the preferences of an institution and its capability in 

handling problems of water management is still an issue. The water demand 

is also increasing rapidly, while only a few options available for new 

development or strategy on utilizing the limited water resources of freshwater 

and conservation of groundwater. Moreover, regardless of the water demands, 

there are excessive growth projections that lead to investment in excess water 

supply capacity that also means higher cost. 

 

Like many other decision-based problems, applications of decision support 

system (DSS) help decision makers improve their evaluations for water 

management. DSS has been widely used in water resources management to 

facilitate decision-making in the competing demand from irrigation, industry, 

water supply, hydropower, environment, and climate change (Anzaldi et al., 

2014). A suitable multi-criteria decision-making (MCDM) tool is necessary 

to attain the success and effectiveness of water supply systems, considering 

the importance of water resources and the various criteria that must be taken 

into account in decision-making (Garfí et al., 2011). 
 

Some studies have used various MCDM methods or group decision-making 

on water resources management. Among others, analytic hierarchy process 

(AHP) was used for water supply scheduling (Ilaya-Ayza et al., 2017); 

preference ranking organization method for enrichment evaluations 

(PROMETHEE) in water network segmentation (Fontana and Morais, 2017); 

elimination and choice expressing reality (ELECTRE)-II for water allocation 

(Kumar et al., 2016) and voting procedure in network maintenance (Almeida-

Filho et al., 2017). While these works did not address the problem, they 

demonstrated the applicability of MCDM in solving water management 

problems. 
 

Meanwhile, there are various methods implemented for water demand 

forecasting, including standard methods like water quota and conventional 

tendency approaches. There are also multiple linear regression approach, 

system dynamics approach, the gray model and artificial neural network 

approach (Sebri, 2016; Ghalehkhondabi et al., 2017; Tan et al., 2017). 

Recently, many researchers adopted the linear regression model to develop 

water demand forecasting models (Al-Musaylh et al., 2018; Candelieri et al., 

2018), for long-term forecasting. However, neural networks and hybrid 
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models are found to be more suitable for short-term forecasting (Haque et al., 

2018). 
 

In this study, a decision-support system, designed and developed for 

forecasting domestic water demand and management, is proposed. This 

system incorporates an MCDM technique to assist the selection of the most 

appropriate demand forecasting methodology and conservation measures 

based on various criteria for institution-specific. Furthermore, this study 

discussed the domestic water usage patterns, bridge the gap between present 

and future domestic water demand and management. The sample data used 

was taken from the Asian Institute of Technology (AIT) through the Office of 

Facilities and Asset Management (OFAM) to demonstrate the system 

capability. 

 

 

 

2. Methodology 

 

This section presents the steps of building a model for water demand and 

management. The steps include data gathering, identifying of MCDM 

evaluation criteria, selecting of forecasting method, testing of datasets and 

generating the results. Figure 1 shows the proposed flow in building an 

institution’s own model tested in this study. 
 

 

 

 

 

 

 

Figure 1. Process flow diagram of the water demand and  

management of the institution 

 

2.1 Proposed System Architecture 

 

Figure 2 shows the proposed system architecture. There were three 

components involved in the project, namely the MCDM technique, prediction 

model, and visualization. The MCDM aids in identifying the appropriate 

forecasting method to be used by the institution based on its preferences. The 

institution sets their criteria and weight to choose the forecasting method. 

Furthermore, the institution decides what type of prediction model based on 
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the result in MCDM. The dataset is then loaded to the identified prediction 

software tool to generate a dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Proposed system architecture for water demand  

management of the institution 

 

2.2 Data Collection and Criteria 

 

In terms of the planning level, many institutions used varied approaches for 

water demand forecasting exercises. This study focused on the short and 

midterm water demand using forecast variables. These variables were 

categorized into socioeconomic (past water demand [2012-2016] and current 

population) and weather forecast (average temperature, total amount of 

rainfall, number of days of raining, average relative humidity, maximum 

energy from sunray, and average ground level temperature). The 

socioeconomic variables are usually applied for the long-term effects on water 

demand, while weather forecast variables are used for short-term water 

demand (Oyebode and Ighravwe, 2019). Data were sourced from the 2012-

2016 AIT and Pathum Thani weather station records, which contained two 

socioeconomic and six weather forecast variables. More specifically, the data 

in socioeconomic variables consists of monthly and annual water consumption 

in each building, while weather forecast variables are on a monthly basis. 

 

In this system, the institution can choose or design their criteria in selecting 

the models to forecast the water demand and supply. There is a possibility that 

every institution has different sets of criteria. The criteria below were based 

on the preferences of the AIT OFAM. 
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Criteria 1: Forecast accuracy – this implies that an institution should make 

forecasts close to real figures so that the real picture of demand can be 

determined. 

 

Criteria 2: Data requirements – the forecasting methods should depend on the 

availability of the data. When there is no data available or irrelevant to the 

forecast, then qualitative forecasting methods must be used. 

 

Criteria 3: Speed – this means the fast execution time of the forecasting 

method in the entire process. 

 

Criteria 4: Required resources – these include the time and cost to build 

(including data collection, verification, and validation), run and analyze the 

results of the model, and the model’s hardware requirements (e.g., computer 

memory). 

 

Criteria 5: Ease of use – the method should be user-friendly and 

understandable in most cases. The methods should be such that the institution 

does not face any complexities, too much time and manual labor involved in 

preparing the forecasts. 

 

Criteria 6: Flexibility – this indicates that the forecasts must be adjustable and 

adaptable to changes. It gives management the flexibility necessary to use 

non-numerical data sources, such as the intuition and judgment of the 

experienced user. 

 

2.3 Application of MCDM Approach 

 

The MCDM, which incorporates multiple criteria, is a method to solve 

decision and planning problems. Using the MCDM, the institution can attain 

an optimal solution to solvable problems using common models. Some other 

widely used MCDM methods are AHP (Saaty, 1994), the ELECTRE 

(Benayoun et al., 1966), and the technique for order of preference by similarity 

to ideal solution (TOPSIS) (Hwang and Yoon, 1981). In this study, AHP was 

used in selecting forecasting method. The AHP has a particular application in 

group decision making and is used around the world in a wide variety of 

decision situations in the government, business, industry, healthcare, and 

education. Rather than prescribing a correct decision, the AHP helps decision 

makers find one that best suits their goal and their understanding of the 

problem. It further provides a comprehensive and rational framework for 
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structuring a decision problem; representing and quantifying its elements; 

relating these elements to the overall goals; and evaluating alternative 

solutions (Giri and Nejadhashemi, 2014). 

 

2.4 Construction of Water Demand Forecasting Models 

 

In short-term forecasting, the data can get in less than a year and offer forecasts 

of hourly, daily, weekly or monthly demand. These short-term forecasts assist 

water utilities with day-to-day system management and optimization (Donkor 

et al., 2014). This study utilized the autoregressive integrated moving average 

(ARIMA) model for forecasting time series to predict the water demand for 

the next month using AIT OFAM’s historical record of water consumption. 

The ARIMA model was used and integrated into other models including 

hybrid model 1 ARIMA - artificial neural network (ANN) and hybrid model 

2 ARIMA - SVM. These hybrid models both have linear and nonlinear 

patterns for forecasting water demand. There are two steps applied in each 

hybrid model. First, an ARIMA model is used to analyze and predict the linear 

values for future value. Second, the residual obtained from the ARIMA is 

entered to ANN or SVM model. Since the ARIMA model cannot capture the 

nonlinear structure of the data, the residuals of linear model would contain 

information about the nonlinearity. The results from the ANN or SVM model 

could be used as predictions of the error terms for the ARIMA model. 

 

The midterm forecast can generate data from one to 10 years with monthly or 

annual horizons. It allows the water utility to develop revenue forecasts and 

plan investments (Donkor et al., 2014). This study used a linear regression 

model, and both the neural network and SVM for midterm water demand 

forecasting model to predict the next one to three years of water demand. 

 

2.5 Model Optimization and Evaluation 

 

To maximize the model performance, this study applied model optimization 

through sensitivity analysis. All models were evaluated using 10-fold cross-

validation strategy. Each sub data set was randomly divided into sets in which 

nine sets were dataset training and one set was dataset testing. This process 

was repeated 10 times. Mean absolute percentage error (MAPE) was used to 

measure the forecast error of each model. 
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Preferred Water Demand Forecast 

Preferred Water Demand Forecast Method 

Criteria 

Data Requirements Ease of Use Flexibility Forecast Accuracy Required Resources Speed 

Alternatives 

ARIMA Hybrid 1 (ARIMA-ANN) Hybrid 2 (ARIMA-SVM) 

Preferred Water Demand Forecast 

Preferred Water Demand Forecast Method 

Criteria 

Data Requirements Ease of Use Flexibility Forecast Accuracy Required Resources Speed 

Artificial Neural Network Linear Regression Support Vector Machine 

3. Results and Discussion 
 

3.1 AHP Model 
 

Figure 3a and 3b show the screenshot of the AHP model, preferred water 

demand forecast methods for short-term and midterm period. There are three 

levels in each model where every node in a level is the parent of every node 

in the next level down. The model starts from the goal and moves down 

systematically. A set of criteria in the next to the last level is connected only 

to those elements for which pairwise comparison makes sense in the bottom 

level. Decision-maker may assign value to compare a pair of elements that 

give a meaningful weight vector. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

(a) 

Alternatives 

(b) 

Figure 3. Screenshots of created AHP mode:  

water short-term demand (a) and midterm water demand (b) 
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3.2 Criteria Weight Results 
 

Table 1 shows the weights of each water demand forecasting criteria. Forecast 

accuracy has the highest weight of 0.39. The second highest weight is the data 

requirements with 0.26. This is followed by speed and required resources with 

a weight of 0.17 and 0.10, respectively. The lowest weight is ease of use (0.03) 

and flexibility (0.05). The inconsistency index 0.089 is desirable to be less 

than 0.1. This was kept in mind while performing the pairwise comparison for 

all the items. 

Table 1. Water demand forecasting criteria 

Criteria Weights Rank 

Forecast Accuracy 0.39 1 
Data Requirements 0.26 2 

Speed 0.17 3 

Required Resources 0.10 4 

Flexibility 0.05 5 

Ease of Use 0.03 6 

Total 1.00  
Inconsistency: 0.089 

3.3 Performance of Models 
 

In the construction of the model, cross-validation was used to measure the 

model’s performance using 2016 data as test set. Lewis (1989) classified 

models: best model – MAPE is less than 10%, good model – MAPE is between 

10% to 20%, acceptable model – MAPE is 20% to 50%, and false or 

unacceptable model – MAPE is 50% and above. In the short-term level, it only 

needs a historical record of water consumption to predict the water demand 

for the next month. Referring to Table 2, all models were considered as the 

best model. ARIMA has the lowest MAPE value (4.09%) compared to two 

hybrid methods. In the midterm level, it applied optimization to select suitable 

attributes every model. In Table 3, SVM generated the lowest MAPE value 

(5.47%), followed by neural network with 6.89% MAPE value. Linear 

regression is still considered a good model with MAPE value of 12.90%. 

Table 2. Comparison of short-term water demand forecasting model 

Methods 10 Folds-Cross Validation MAPE Year 2016 Test set MAPE 

ARIMA 6.82% 4.09% 

Hybrid ARIMA ANN 7.02% 4.62% 

Hybrid ARIMA SVM 6.99% 4.36% 
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3.4 Comparison of Water Demand Forecasting Models 

 

Table 4 summarizes the overall priority of water demand for short-term water 

demand period. The table also shows the average weights of each water 

demand factors or operational planning model. Based on the result, ARIMA 

is 0.49 or 100% – the most preferred model, followed by hybrid 2 (ARIMA-

ANN) with 0.29 or 59.1%, and hybrid 1 (ARIMA-ANN) with 0.22 or 44.7%.  

 

Table 4. Overall priority weights for water demand forecasting in short-term period 

 

Criteria ARIMA 
Hybrid 1 

(ARIMA-ANN) 

Hybrid 2 

(ARIMA-SVM) 

Preferred Model 0.49 0.22 0.29 

Forecast Accuracy 0.59 0.16 0.25 

Data 

Requirements 
0.41 0.26 0.33 

Speed 0.33 0.33 0.33 

Required 
Resources 

0.53 0.14 0.33 

Flexibility 0.55 0.21 0.24 

Ease of Use 0.49 0.31 0.20 

Rank 1 3 2 

 

Table 5 shows the overall priority of water demand for midterm water demand 

period. Also, it shows the average weights of each water demand factors. 

Results revealed that SVM is 0.46 or 100%, which means that it is the most 

preferred model for midterm water demand period or tactical planning level. 

ANN is 0.29 or 55.2% (good as the most preferred model). Lastly, the linear 

regression is 0.25 or 51.9% (still good as the most preferred model). 
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Table 5. Overall priority weights for water demand forecasting in midterm period 

 

Criteria ANN SVM Linear Regression 

Preferred Model 0.29 0.46 0.25 

Forecast Accuracy 0.29 0.57 0.14 

Data Requirements 0.14 0.57 0.29 

Speed 0.16 0.25 0.59 

Required Resources 0.57 0.33 0.10 

Flexibility 0.52 0.33 0.14 

Ease of Use 0.25 0.60 0.15 

Rank      2         1                   3 

 

 

 

4. Conclusion and Recommendation 

 

There are different factors and priorities that need to be considered in seeking 

the right water demand forecasting model to be used by each institution. In 

this study, AHP method was used to obtain weights of identified water demand 

forecasting model criteria. The accuracy had the highest weight of 0.39, 

considered as important criteria. It was followed by the data requirements 

(0.26), speed weight (0.17), required resources (0.10), ease of use (0.05) and 

flexibility (0.03). AHP helped in selecting an appropriate forecasting model 

and resolved the MCDM problems of the institution. 

 

Furthermore, this study utilized two out of three levels of short-term and 

midterm periods wherein each period was applied to the three models. Each 

model was optimized and used 10-fold cross-validation to evaluate prediction 

models by dividing the dataset into training and test sets. The error measure 

used in the study is the MAPE – the most widely adopted in the water demand 

forecasting. There was a significant improvement of the model’s accuracy 

from the construction of a model to deploying the data set. 

 

In short-term water demand forecasting, it only used one variable to predict 

the water demand. ARIMA is 0.49 or 100% – the most preferred model for 

operational planning level. The most preferred model can be used for short-

term water demand period or operational planning level. As for the midterm 

water demand forecasting, it applied sensitivity analysis and model 

optimization. These were used to determine the input variables that contribute 
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the most to the output behavior and the non-influential inputs or to ascertain 

some interaction effects within the model. Based on the result, SVM is 0.49 

or 100% – regarded as the most preferred model for tactical planning level 

that can be used for both midterm and long-term water demand. 

 

It is recommended that the institution should collect enough data needed in 

the decision support system for water demand and use a forecasting model that 

fits into the institution’s need. Aside from AHP, the institution can likewise 

use other MCDM techniques such as ELECTRE, PROMETHEE and 

analytical network process. The institution can also add or modify the criteria 

based on the needs of goals of the institution. Moreover, the socio-

demographic data must also be included as variables of the forecasting model. 

Lastly, mean absolute deviation, mean squared deviation, and other statistical 

techniques to compare the fits of different forecasting and smoothing methods 

should be employed. 
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