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Abstract 
 

The knowledge and understanding of areas prone to flooding are critical in mitigating 

and reducing risks caused by extreme water events. In the Philippines, however, large 

scale riverine flooding still remains a huge challenge in many parts of the country as 

most river basins are still ungauged. This limitation has consequently led to data 

scarcity and deficiency and has prevented the application of comprehensive floodplain 

mapping techniques. This study aims to address such limitations by introducing a 

simplified method for the preliminary identification of flood exposed areas within a 

river system using geomorphic classifiers. The Geomorphic Flood Index (GFI), a 

linear binary classification technique, is used in delineating flood-prone areas in a 

watershed within the Cagayan de Oro River Basin. The index used three morphological 

features – the drainage network, the contributing area, and the water level to perform 

the linear binary classification. Results of the study showed the potential of the GFI in 

delineating flood-prone areas in data-scarce environments particularly in the 

watershed of the Cagayan de Oro River. 

 

Keywords: GFI, linear binary classifiers, flood-prone area, image classification, 

confusion matrix 

 

1. Introduction 
 

One research topic of increasing interest is the determination of floodplain 

areas in data-scarce environments. There had been several research studies 

conducted on addressing flood hazard prediction. Some of these studies 

addressed the prediction of floods at ungauged sites by operating a transfer 

hydrologic information using regionalization methods (Bloschl and Sivaplan, 

1997; Merz and Bloschl, 2008; Padi et al., 2011). Others proposed simplified 

global-scale models of surface water flows based on hydrological routing 

schemes driven regional or global climate models (Herold and Mouton, 2011; 
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Pappenberger et al., 2012). Hydraulic models, however, have drawbacks 

being computationally intensive, costly and difficult to implement over large 

study areas. Consequently, hazard assessment over large, unstudied areas 

poses a significant challenge. Therefore, there is a need to look for alternative 

ways of generating flood inundation maps in an effective and inexpensive 

means. Extensive investigations using different hydrologic, climatic and 

topographic features have already been conducted in several Italian gauged 

basins (Manfreda et al., 2014); an ungauged basin in Africa (Manfreda et al., 

2014) and over the entire continental U.S. (Samela et al., 2017) to identify 

good indicators of flood hazard exposure. Based on these extensive 

investigations, a method called Geomorphic Flood Index (GFI), based on 

linear binary classifiers has consistently exhibited higher classification 

accuracies compared to other candidates. It presented low sensitivity to 

changes in the input data in terms of dominant topography of the training area, 

size of the training area, Digital Elevation Model (DEM) resolution, standard 

flood maps adopted, return time and the scale of the analysis. This study 

investigated the delineation of flood-prone areas in one of the watersheds of 

the Cagayan de Oro River Basin using the GFI method. 

 

 

 

2. Methodology 

 

The city’s intensive developments and rapid urbanization increase the 

occurrence of riverine flooding and other extreme water events. Since the 

December 2011 flood that claimed thousands of lives and damaged several 

million of properties, the city has been preparing for similar extreme water 

events. The December 2012 and December 2017 flood incidents brought about 

the Typhoons Pablo and Vinta, respectively, were among the worst floods that 

hit the city. This extreme water event can be attributed to Cagayan de Oro 

River Basin’s inherent features that made it naturally liable to flooding which 

is further exacerbated by anthropogenic activities. Knowledge and 

understanding of flood-prone areas within the river basin are essential in 

mitigating and reducing the loss of lives and damage to properties. However, 

in a data-scarce environment, the need to identify these areas using the least 

amount of data is of imperative concern. The use of linear binary classification 

in delineating flood-prone areas in the Cagayan de Oro River Basin is an 

attempt to address such concern. 
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The delineation of flood-prone and non-flood prone areas in this study were 

carried out using linear binary classification. The study employed ArcGIS and 

MATLAB for the pre-processing, processing and post-processing of datasets. 

2.1 Digital Elevation Models 

For the purpose of this study, DEMs from the U.S. Geological Survey (USGS) 

Hydrological data and maps based on Shuttle Elevation Derivatives at 

multiple Scales (HydroSHEDS) were used. The 3-arc second resolution void-

filled DEM (DEM-void) and the hydrologically conditioned DEM (DEM-con) 

were particularly used and regridded to 90-meter cell size. 

 

2.2 Standard Flood Hazard Map 

A 100-year standard flood map for Cagayan de Oro City derived from the 

University of the Philippines Disaster Risk and Exposure Assessment for 

Mitigation (UP DREAM) Project was used for training the classifiers. To be 

able to use the standard flood map, it was converted into a raster file and 

reclassified to represent flooded areas with a class value of 1 and not flooded 

areas with a class value of 2. The resulting reclassified flood map was used to 

generate reference points as ground truths for the classification process. 

2.3 DEM Extraction and Pre-Processing for the Area 

 

Using ArcGIS, void-filled and hydrologically-conditioned DEM for the study 

area were extracted from the HydroSHEDS DEM. Flow direction and flow 

accumulation were then generated from these DEMs. Generated raster files 

including the void-filled and hydrologically-conditioned DEMs were then 

converted to ASCII files for processing into MATLAB.  

 

2.4 Linear Binary Classification 

 

Using MATLAB, a linear binary classification was performed using the input 

datasets to identify flooded and not flooded areas. For this study, three 

morphological features namely the drainage network, the contributing area, 

and the water level were utilized to perform the linear binary classification. 

These features were utilized as they relate to some of the morphological 

characteristics of a basin to estimate the water depth calculated as a function 

of the contributing area and take into account the essential role assumed by 

the flow depth on floodplain delineation (Samela et al., 2017). For this study, 

the morphological descriptor GFI was defined as, 
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In (
hr

H
)                                            (1) 

The GFI compares each point of the basin variable water depth hr with the 

elevation difference H. The variable water depth hr, is computed as a function 

of the contributing area in the nearest point of the drainage network 

hydrologically connected to the point under examination, 

hr≈bAr
n
                                                    (2) 

As the calculation takes into account an estimate of the water level in the 

nearest element of the drainage network, the nearest river was then considered 

as a source of hazard. The resulting image (GFI image) from the MATLAB 

processing was then manipulated in the ArcGIS environment for post-

processing and evaluation of results. 

2.5 Image Classification 

 

Using the resulting image from MATLAB, flooded and not flooded areas were 

identified and classified and coded as 1 for flooded and 2 for not flooded. To 

proceed with the image classification, accuracy assessment using supervised 

image classification was used with standard flood maps as training sites. The 

intent was to categorize all pixels in the standard flood map into one of several 

classes or themes. By classifying the image (standard flood map), the study 

was able to identify and portray the features occurring in the image in terms 

of the classes or themes these features actually represented in the ground. 

Using supervised image classification, the study identified flooded and not 

flooded areas from the standard flood map.  

 

These training sites or test pixels were represented by reference points 

distributed evenly throughout the map where flooded and not flooded areas 

are present. Since there were only two classes involved – flooded and not 

flooded, the rule of thumb was to have ten times the number of test points for 

each class. Thus, the test points for each class is twenty. A number code was 

assigned for each class (e.g. 1 for flooded areas; 2 for not flooded). Using the 

Geoprocessing tool of ArcGIS, the system was set to align the pixels to be 

created from the reference points with the pixels of the classification as shown 

in Figure 1. Under the environment setting, the extent and snap raster were set 

as that of the classified image. The pixels should align correctly with the 

reference points. 
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Figure 1. Creation of test pixels in red and yellow arrows (b) 
from the reference points in (a) 

 

To validate the image classification process, the classified image from 

MATLAB and the number codes for the two classes and from the test points 

were matched to check that each class was the same in both (i.e., 1 for flooded 

and 2 for not flooded) (Figure 2). The reference points from the standard flood 

map and the classified image from MATLAB were then combined using the 

combine tool of ArcGIS and generate an image with new combined raster 

values for the two images.  

A confusion matrix using the pivot tool from ArcGIS was then generated and 

used for the evaluation of results. The confusion matrix described the 

performance of the linear binary classification using the set of test data from 

the actual (standard flood map) against that of the predicted (MATLAB 

generated image).  
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Figure 2. Matched test pixels with GFI flood map (a); 

 a combination of classified image (b) 

 

2.6 Evaluation Results 
 

To evaluate the performance of each descriptor, it was required that the 

number of derived test pixels be identified as True Positives (TP) or the correct 

positive prediction, False Positives (FP) or the incorrect positive prediction, 

True Negatives (TN) or the correct negative prediction and False Negatives 

(FN) predicted or the incorrect negative predictions based on the standard 

flood map. From these values, the standard measures for identifying the errors 

and correct predictions were the following: 

 

a) True Positive Rate (TPR) or Sensitivity, which is the number of correct 

positive predictions among all positive samples available or 
 

TPR=
TP

TP+FN
                                               (3) 

b) False Negative Rate (FNR), defined as the number of incorrect negative 

results among the total number of positives or  
 

FNR=
FN

TP+FN
                                          (4) 

(b) (a) 



W. D. Talampas & D. E. Tarepe / Mindanao Journal of Science and Technology Vol. 17 (2019) 214-226 

220 

 

c) True Negative Rate (TNR) or Specificity – the number of correct negative 

predictions among all negative samples available or 
 

TNR=
TN

TN+FP
                                          (5) 

d) False Positive Rate (FPR) or (1-Specificity), defined as the number of 

incorrect positive predictions over the total number of negatives or 

 

FPR=
FP

TN+FP
                                         (6) 

e) Error Rate (ERR), defined as the number of all incorrect predictions over 

the total number of the dataset or  

 

ERR =
FP+FN

TP+FN+TN+FP
                                  (7) 

f) Accuracy (ACC), which is the number of all correct predictions over the 

total number of the dataset or  

 

ACC =
TP+TN

TP+FN+TN+FP
                                      (8) 

g) Kappa Coefficient (K), which is the measure of agreement between 

classification and truth values or  

 

K =
TOTAL ACCURACY-RANDOM ACCURACY

1-RANDOM ACCURACY
                         (9) 

For the error rate and accuracy, the best error rate is 0.0 and the worst is 1.0 

while the best accuracy is 1.0 and the worst is 0.0. The performance of the 

classifiers was evaluated using the Receiver Operating Characteristics (ROC) 

curve and the Area Under the ROC Curve (AUC) (Fawcett, 2006). The value 

of the AUC ranges from 0.5 (completely random classifier) to 1.0 (perfectly 

discriminating classifier) (Samela et al., 2017). 

 

 

3. Results and Discussion 

 

3.1 Standard Flood Map versus GFI Image 

 

The study made two major considerations in the analysis of the resulting 

image from the linear binary classification carried out in MATLAB. The 

standard flood map used in the study was generated using a 1m x 1m resolution 
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Lidar image, which is required in hydraulic and hydrodynamic models to 

provide a more accurate representation of the topography and thus allow for 

the accurate hydraulic simulation of flood models. For the linear binary 

classification, the study used a 30m x 30m resolution image. This huge 

difference in resolution consequently made an obvious difference in 

generating a more accurate output from the linear binary classification 

process.  

 

Figure 3 shows the comparison between the standard flood map and GFI 

flood-prone areas. Given the image resolution difference used in the 

generation of the two maps, the map generated by the GFI was able to 

satisfactorily identify flooded areas along the main channel of Cagayan de Oro 

River. While the standard flood map shows flooding in smaller streams, these 

areas are historically not identified as flood-prone areas.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Standard flood map (a) vs. GFI flood-prone areas (b) 

 

3.2 Confusion Matrix 

 

Table 1 shows the confusion matrix generated from the image classification. 

Based on the confusion matrix, the study recognized from the reference points 

that were established, that out of the 20 test sites only 12 were accurately 

classified as flooded areas and eight were incorrectly classified as not flooded. 

(a) (b) 
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For not flooded areas, the matrix shows that out of the twenty test sites, only 

17 were correctly classified as not flooded while 3 are incorrectly classified as 

flooded. From the confusion matrix, the study was able to calculate for the 

True Positive Rate or Sensitivity, True Negative Rate or Specificity, Error 

Rate, Accuracy, Precision, Matthew’s Correlation Coefficient and the AUC. 

Table 1. Confusion matrix for accuracy assessment of flood-prone areas 

  Actual  

 Classification Flooded Not Flooded Ground Truth 

Predicted  
Flooded  (TP) 12 (FN)   3 15 

Not Flooded  (FP)   8 (TN) 17 25 
 

Total         20          20 40 

 

Using the confusion matrix in Table 1 and the formulas given above, values 

for the different metrics were calculated. The sensitivity value of 0.80 suggests 

that during the conduct of the accuracy assessment for flooded areas, there is 

an 80% probability that the test pixels identified the areas as positive or 

flooded areas. In the same manner, the specificity value of 0.68 indicates that 

during the accuracy assessment for not flooded areas, test pixels identified 

these areas as negative or not flooded. Table 2 below shows the summary of 

the calculated values of the metrics for errors and correct predictions. 

Table 2. Summary of computed values for the metrics of errors and correct 

predictions 

Measure Calculated Value 

True Positive Rate or Sensitivity (TPR) 0.80 

True Negative Rate or Specificity (TNR) 0.68 

False Positive Rate or 1-Specificity (FPR) 0.32 

False Negative Rate (FNR) 0.20 

Error Rate (ERR)   0.275 

Accuracy (ACC)   0.725 

Kappa Coefficient (K) 0.60 

 

From Table 2, a false positive rate of 0.32 implies that there is a 32% 

probability that the areas identified as flooded will be identified as not flooded. 

Likewise, a false negative rate of 0.20 implies that 20% of the areas identified 

as not flooded will be identified as flooded areas. The accuracy value of 0.725 

or 72.5% represents the proportion of true positive results (true positive and 

true negative). It indicates that 72.5% of times the test result is accurate 
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regardless if positive or negative. While this explanation remains correct most 

of the time, it is of value to mention that even if the accuracy value is high, it 

does not directly follow that both sensitivity and specificity would also have 

high values (Zhu et al., 2010). In terms of measuring the extent to which the 

test sites in the accuracy assessment were correct representations of the 

variables measured, a kappa coefficient of 0.60 was achieved. Table 3 is the 

interpretation of the kappa coefficient (McHugh, 2012), implying that the 

accuracy assessment has a moderate level of agreement.  

Table 3. Kappa coefficient interpretation 

Kappa Value Level of Agreement Percent Data Reliability 

0 – 0.20 None 0 – 4% 

0.21 – 0.39 Minimal 4 – 15% 

0.40 – 0.59 Weak 15 – 35% 

0.60 – 0.79 Moderate 35 – 63% 

0.80 – 0.90 Strong 64 – 81% 

Above 0.90 Almost Perfect 82 – 100% 

 

Based on the test’s true positive rate or sensitivity against the false positive 

rate or 1-specificity, a ROC curve was generated by varying the threshold from 

(0,0) to (1,1) and tracing the curve through the ROC space. According to 

Fawcett (2003), classifiers appearing on the left-hand side of the ROC curve 

can be thought of as “conservative” as they make positive classification only 

with strong evidence so they make false positive errors but have low true 

positive rates. On the other hand, classifiers on the upper right-hand side of 

the curve are thought of as "liberal", making positive classifications with weak 

evidence, making them classify nearly all positives correctly but often have 

high false positive rates.  

Based on the ROC curve in Figure 4, the classifiers for this study, point (0.32, 

0.8) is to perform well in the “conservative” side. The ROC point (0.32, 0.8) 

also has the highest accuracy of 72.5% compared to the others with accuracies 

ranging from 50 to 70%, which can indicate that the classifier is capable of 

identifying likely positives than at identifying likely negatives 
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(0.32, 0.8) 

 

 

 

 

 

 

 

 

 
 

Figure 4. Receiver Operating Characteristics (ROC) Curve 

 

To be able to summarize the performance of the classifier into a single index, 

an AUC can be calculated. The area under the ROC curve is a measure of how 

well a parameter can distinguish between two diagnostic groups, in this case, 

flooded and not flooded. The General Internal Medicine of the University of 

Nebraska Medical Center (Tape, n.d.) has outlined the rating for AUC as 

shown in Table 4. From the ROC curve, the computed AUC is 0.75, indicating 

that the parameter was able to fairly distinguish which areas are flooded and 

not flooded. 

Table 4. Rating for Area Under the ROC Curve 

 

Area Under the ROC Curve (AUC) Rating 

0.90 – 1.0 Excellent 

0.80 – 0.90 Good 

0.70 – 0.80 Fair 

0.60 – 0.70 Poor 

0.50 – 0.60 Fail 

 

The AUC measures discrimination, denoting that the test is able to correctly 

classify those areas that are flooded and not flooded. By randomly selecting 

an area that is flooded and an area that is not flooded and subjecting both of 

them to the test, the AUC is that percentage when the test correctly classifies 

the areas as flooded and not flooded from the randomly selected pairs. 
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Overall, the accuracy assessment performed in the research study was able to 

provide noteworthy information as to the suitability of the linear binary 

classification method in distinguishing flooded and not flooded areas. The 

accuracy value revealed how often the classifier is correct – for this study, 

72.5%. The kappa coefficient tells how well the classifier performed than it 

would have performed purely by chance, which is 0.60 for this study – 

indicating that it has data reliability of 35-65%. An AUC of 0.75 further 

indicates that in a randomly selected case, a flooded area has a score larger 

than that of a not flooded area in 75% of the time. 

 

 

 

4. Conclusion and Recommendation 

 

The results show that a readily accessible digital elevation model with the use 

of the linear binary classifier GFI allows the delineation of flood-prone areas 

in one of the watersheds of the Cagayan de Oro River Basin. The classifier 

provides acceptable detection accuracies using only a small number of 

datasets, very low cost and a reduced amount of data processing. Comparing 

the standard flood map and the GFI predicted map, flood area prediction of 

the GFI shows higher accuracies within the river channel as the source of 

hazard. This is being so as the watershed’s contributing area and drainage 

networks are taken as primary features for the linear binary classification. 

Based on the study result, prediction accuracies can be greatly influenced by 

the quality of the input datasets, particularly the DEMs being used. High-

resolution DEMs can significantly enhance the detection accuracies of the 

classification method. Having shown acceptable results, the GFI method can 

be applied to other non-modeled or ungauged river basins although further 

investigation may be carried out to strengthen confidence on the use of the 

method. 
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