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Abstract 
 

This paper introduces a Smart Assistance for Public Transport System to address 

challenges like bus arrival time prediction and seat vacancy. Leveraging GPS 

technology and ESP32 CAM microcontrollers integrated with the Faster Objects, 

More Objects (FOMO) machine learning technique, this system offers real-time 

vehicle tracking and object detection capabilities. This research aims to design and 

implement a smart assistance system for public transport, focusing on modern buses, 

to enhance the efficiency of public transportation systems. It encompasses the 

development of a GPS-based plug-and-play device, a user-friendly smart application, 

and an evaluation of the proposed system through implementation and testing. The 

methodology involves system design for real-time tracking, passenger counting, and 

seating availability, along with implementing GPS systems and developing a smart 

application. Node.js, React Native, and Expo are utilized for backend and frontend 

development, ensuring seamless integration and functionality. 

 

Keywords: ESP32 CAM, Google Maps, Mobile Application, NEO 6M GPS 

Person Detection 

                                                       

 

1. Introduction 

 

The advancement of technology has paved the way for innovative solutions in 

public transportation, particularly in enhancing the safety and efficiency of 

modern bus systems (Akter, 2020; Rathod and Khot, 2016; Skhosana and 

Absalom, 2020). This paper introduces a Smart Assistance for Public 

Transport System specifically designed to address issues such as bus arrival 

time prediction and seat vacancy. The research aims to present a 
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comprehensive online system that meets these challenges through real-time 

monitoring and intelligent data processing. 

 

A sophisticated vehicle tracking system was introduced to efficiently monitor 

the movement of any equipped vehicle at any time and location. By leveraging 

a cost-effective combination of smartphone application and microcontroller 

technology (Lee et al., 2014), the in-vehicle device utilizes the Global 

Positioning System (GPS) (Al-Khedher, 2011), managed by an ESP32 CAM 

microcontroller integrated into the vehicle. Similarly, Sonawane et al. (2020) 

developed an Android-based application to help users check the real-time 

location of buses. Their system connects to an updated database via a GPS-

based interface to improve user experience, aligning with approaches by 

Bhardwaj et al. (2023). Wahyu (2022) also explored the integration of ESP32 

and YOLO for real-time object detection in smart applications such as door 

locks and analyzing inference time in face recognition—principles that this 

study adapts for public transport. 

 

Recent developments in machine learning have enabled smarter transport 

solutions. Muslikhin et al. (2024) demonstrated how Deep Action Learning 

(DAL), integrated with object detection algorithms like YOLO, improves the 

navigation and obstacle avoidance of Automated Guided Vehicles (AGVs) in 

complex environments. Similarly, researchers have integrated the ESP32 

CAM with the Faster Objects, More Objects (FOMO) technique developed by 

Edge Impulse, significantly enhancing object detection on low-resource 

devices (Boyle et al., 2023; Da Silva et al., 2023). This innovation supports 

real-time object detection with minimal computational and memory capacity, 

making it ideal for transport systems. 

 

FOMO’s practical applications extend to various domains. According to 

Gotthard and Broström (2023), object detection models such as SSD 

MobileNetV2, FOMO MobileNetV2, and YOLOv5 can be deployed on edge 

devices with camera sensors to monitor and classify objects in real-time. This 

has been used in wildlife conservation efforts, including camera traps in the 

Ngulia sanctuary in Africa for identifying endangered species and detecting 

intruders. Novak et al. (2024) showcased FOMO in an intelligent probe for 

environmental monitoring, demonstrating its broad applicability. 

 

In this study, the ESP32 CAM integrated with FOMO serves as a compact yet 

powerful platform for deploying advanced machine learning models. This 

integration allows modern buses to efficiently monitor and manage seat 
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availability in real-time, addressing limitations in earlier IoT-based systems 

(Hamid et al., 2019). By detecting the number of available seats, the system 

enhances the overall passenger experience. Islam and Afzal (2020) proposed 

face detection for seat availability, while Sojol et al. (2018) developed an 

automated passenger-counting system using an Arduino Uno. The present 

research advances these efforts by incorporating real-time tracking and smart 

detection. 

 

This solution acknowledges the growing demand for real-time public transport 

information (Sungur et al., 2015) and proposes a more efficient, user-friendly 

experience. The combined use of FOMO, ESP32 CAM, and Google Map 

navigation reflects a paradigm shift in how users engage with modern 

transportation systems, improving accessibility, accuracy, and reliability 

(Xiaojian et al., 2018; Lau, 2013; Paul et al., 2021). 

 

 

 

2. Methodology 

 

2.1 Research Methodology 

 

This study employed a structured and iterative methodology based on the 

ADDIE model—Analysis, Design, Development, Implementation, and 

Evaluation—tailored to the requirements of Internet of Things (IoT) system 

development. 

 

During the Analysis phase, field observations and stakeholder consultations 

were conducted to define core technical specifications, including real-time 

GPS tracking with sub-5-meter accuracy, seat occupancy detection latency 

under 500 milliseconds, and operational autonomy exceeding eight hours. 

 

The Design phase involved developing an integrated hardware–software 

architecture (Figure 1), featuring a microcontroller with camera module 

(ESP32-CAM, Ai Thinker, China) for edge-based image processing using a 

Fast Object Detection Model (FOMO). The mobile application development 

platform (React Native, Meta, USA) was used for building the front-end 

interface, with cloud database services (Firebase, Google, USA) handling real-

time data synchronization. Simulations were also performed to assess power 

consumption and wireless coverage under varying deployment conditions. 
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In the Development phase, hardware enclosures (custom 3D-printed 

enclosures, Anycubic Photon Mono X, Anycubic, China) were fabricated to 

house the electronics (Figure 8a–b), while the FOMO model was trained and 

fine-tuned for onboard seat detection, as outlined in Section 2.3.5. The mobile 

application was further integrated with the geolocation service API (Google 

Maps API, Google, USA) to enable real-time visualization of bus location 

(Figure 9). 

 

During Implementation, the system was deployed on three public buses 

operating along Route 17 in Cagayan de Oro, Philippines, followed by field 

calibration of the camera modules and GPS modules. 

 

The Evaluation phase involved comprehensive performance validation, 

including object detection accuracy tests (Tables 2–3), GPS precision 

mapping (Tables 4–5), and real-world usability trials. These assessments 

demonstrated the system’s effectiveness, reliability, and readiness for 

operational deployment in public transportation contexts. 

 

2.1.1 System Architecture 

 

The Modern Bus Tracking System is designed to provide real-time monitoring 

and tracking of buses using global positioning system (GPS) modules (NEO-

6M, u-blox, Switzerland, 2010) and advanced object detection algorithms 

such as Faster Objects, More Objects (FOMO). The system integrates a 

microcontroller with a camera module (ESP32-CAM, AI-Thinker, China, 

2017) for capturing real-time images and a cloud-based development platform 

(Firebase, Google LLC, USA, 2016) for data synchronization and backend 

services. A smartphone application serves as the user interface. 

 

The core component is the cloud-based development platform, which provides 

robust tools for developers to create Android, iOS, and web applications. It 

offers various features, including user authentication, file storage, and 

application hosting. The platform is specifically designed to support real-time, 

collaborative applications. By integrating the Firebase library into the 

application, developers gain access to a shared data structure where any 

modifications are instantly synchronized with the cloud and other connected 

clients. Users can access the app by clicking the "Track" button and viewing 

the availability of seats on the bus. 
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Figure 1. System Architecture of Smart Application for Real-Time Tracking of Modern           

               Bus and Seat Availability 

 

2.2 Data Flow Diagram 

 

Figure 2 illustrates the system's data flow, detailing the operational sequence 

of the intelligent seat monitoring architecture. The process initiates with the 

activation of the microcontroller with a camera module (ESP32-CAM, AI-

Thinker, China, 2017), establishing a stable wireless connection to facilitate 

data transmission. Simultaneously, the GPS module (NEO-6M, u-blox, 

Switzerland, 2010) begins acquiring satellite signals for GPS-based 

geolocation. At predefined intervals, the microcontroller captures images of 

the passenger cabin, focusing on the seating areas. 

 

Captured images are processed using edge-based image recognition hardware 

(ESP32-CAM, AI-Thinker, China, 2017) employing onboard image 

recognition techniques, including background subtraction and object 

detection, to determine seat occupancy status accurately. Based on the 

analysis, the system dynamically updates the seat availability map. If all seats 

are detected as occupied, the system issues a “Full” status alert, which may be 

displayed on an onboard display panel (OLED 0.96-inch I2C Display Module, 

Generic, China) and simultaneously transmitted to a cloud-based development 

platform (Firebase, Google LLC, USA, 2016). Regardless of the occupancy 

status, updated data are sent to the central server, where passengers and transit 

operators can access them in real time. This cycle repeats continuously, 

ensuring consistent and up-to-date monitoring of seat availability within the 

vehicle. 
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Figure 2. Proposed Flowchart of the System 

 

2.2.1 HTTP Communication 

 

Figure 3 shows the TCP/IP connections that enable HTTP communication, 

providing a reliable and organized method for data packet exchange between 

connected devices. The microcontroller with camera module (ESP32-CAM, 

AI-Thinker, China, 2017) is responsible for configuring the remote host and 

Start 

Initialize ESP32-CAM and connect to WIFI 

Capturing Signal from Satellite for GPS 

Continuously capture images of seats 

Detect people in seats using Image Processing 

Update seat availability information 

Out of  

Vacancy? 

Transmit Data to Server. 

Repeat? 

End 

Display  

“The PUV is Full.” 

No 

Yes 

No 

Yes 



H. G. Gonzales et al. / Mindanao Journal of Science and Technology Vol. 23 (Issue 2) (2025) 193-225 

 

199 
 

port, which define the communication channel and destination server. The 

microcontroller then initiates a TCP socket, creating a virtual channel for data 

transmission. Once the connection is established, the microcontroller uses 

appropriate HTTP instructions, such as POST or GET requests, to encapsulate 

and send the location data. This process ensures that the data is efficiently and 

securely transferred to the server for further processing or storage. 

 

 

Figure 3. HTTP network 

 

2.3 Technologies to be used 

 

2.3.1 Visual Studio Code (VS Code) 

 

The source-code editor (Visual Studio Code, Microsoft Corporation, USA, 

2015) is a streamlined tool that supports development tasks such as version 

control, project execution, and debugging. Designed to optimize the code-

build-debug cycle, the editor offers essential tools for rapid development while 

delegating more complex workflows to comprehensive integrated 

development environments (IDEs) such as Visual Studio IDE (Microsoft 

Corporation, USA, 2015). 

 

2.3.2 React Native 

 

The mobile application development framework (React Native, Meta 

Platforms, Inc., USA, 2015) integrates React's capabilities with native 

platform development, offering a JavaScript library for building cross-

platform user interfaces. Its architecture uses React primitives that render to 

native UI components, allowing applications to access native platform APIs 

while maintaining a single codebase. Although the framework does not 

enforce specific routing patterns or provide complete native API coverage, it 

supports platforms like Expo (Meta Platforms, Inc., USA, 2015) to accelerate 

app development. 
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2.3.3 Firebase Realtime Database 

 

The cloud-based real-time database service (Firebase Realtime Database, 

Google LLC, USA, 2016) provides comprehensive SDKs and documentation 

for cross-platform application development. This cloud service enables real-

time data synchronization across iOS, Android, Web, Flutter, Unity, and C++ 

applications. Its toolset supports development optimization, performance 

scaling, and user engagement through integrated analytics, testing, and 

monitoring features. 

 

The cloud service was selected over alternatives such as MySQL, MongoDB, 

and AWS DynamoDB primarily for its native real-time synchronization 

capabilities (with latency under 200 milliseconds), offline data persistence 

during network outages, serverless automatic scaling to handle peak transit 

demands, and seamless integration with React Native. This choice reduced 

development time by 68% while ensuring reliable seat availability updates for 

passengers—even under unpredictable Philippine network conditions—all 

within a cost-efficient, serverless architecture that eliminates maintenance 

overhead. 

 

2.3.4 Google Maps API 

 

The mapping application programming interface (Google Maps API, Google 

LLC, USA, 2005) facilitates real-time vehicle location visualization in mobile 

applications through HTTP/HTTPS requests. This API allows developers to 

integrate navigation features, traffic data, and route guidance into iOS and 

Android applications. Processing geospatial requests delivers dynamic 

mapping experiences that enhance user navigation with live traffic updates 

and high positional accuracy. 

 

2.3.5 FOMO Implementation 

 

The object detection algorithm (Faster Objects, More Objects [FOMO], Edge 

Impulse Studio, Edge Impulse, Inc., Netherlands, 2021) was deployed using a 

MobileNetV2 backbone architecture quantized for ESP32-CAM 

compatibility. This lightweight convolutional neural network achieves an 

inference speed of 23.6 FPS at 320×240 resolution with 95.3% mean Average 

Precision (mAP) for seat vacancy detection—outperforming the object 

detection algorithm (YOLOv5n, Ultralytics, USA, 2021), which requires four 

times more memory (12.6 MB vs. 3.2 MB) and delivers only 18.2 FPS on 
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equivalent hardware. The algorithm’s architectural efficiency stems from its 

grid-based objectness prediction, which eliminates spatial redundancy while 

preserving essential detection context. 

 

2.3.6 YOLO Model Reference 

 

Comparative evaluations referenced the object detection algorithm 

(YOLOv5n v6.1, Ultralytics, USA, 2022) from Ultralytics’ open-source 

repository, trained on the image recognition dataset (COCO 2017, Microsoft 

Corporation, USA, 2017) (Lin et al., 2014). The nano variant of the algorithm 

was specifically selected for its hardware compatibility, featuring the 

following specifications: 1.9 million parameters; 4.6 GFLOPs computational 

load; default input resolution: 640×640; anchor boxes optimized for Pascal 

VOC. 

 

2.3.7 Model Selection 

 

The selection of object detection models— (SSD MobileNetV2, Google 

Research, USA, 2018), (FOMO MobileNetV2, Edge Impulse, Inc., 

Netherlands, 2021), and (YOLOv5n, Ultralytics, USA, 2022)—for seat 

detection was informed by prior studies demonstrating their effectiveness on 

resource-constrained platforms (Howard et al., 2019; Jocher and Ultralytics., 

2020). Although only partial benchmarking was feasible on the 

microcontroller camera module (ESP32 TimerCam, Ai-Thinker, China, 2021) 

due to hardware limitations, key performance indicators—such as model size, 

inference latency, and accuracy—were referenced from established sources to 

guide architectural decisions. A lightweight performance test using the FOMO 

model was conducted natively, as it aligned with the ESP32’s memory and 

processing capabilities. 

 

2.4 Hardware Components 

 

2.4.1 ESP32-CAM Module 

 

The microcontroller camera module (ESP32-CAM, AI-Thinker, China, 2017), 

shown in Figure 4, features a 32-bit LX6 microprocessor with integrated 

802.11 b/g/n Wi-Fi and Bluetooth 4.2 BR/EDR/BLE connectivity. Key 

specifications include 520 KB of internal SRAM, 4 MB of external PSRAM, 

and multifunctional GPIOs supporting UART, SPI, I2C, PWM, ADC, and 

DAC interfaces. The module is equipped with an OV2640 camera sensor 
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capable of 1600×1200 resolution imaging, connected via a 24-pin gold-plated 

interface, and includes microSD storage support of up to 4 GB for image 

capture. 

 

 

 

Figure 4. ESP 32 CAM Module 

 

2.4.2 ESP 32-CAM AI-Thinker MB Programmer 

 

Figure 5 shows the GPIO interface board (ESP32-CAM AI-Thinker MB 

Programmer Shield, AI-Thinker, China, 2017), a GPIO interface board 

designed for ESP32-CAM modules. This programmer integrates a USB-to-

serial converter chip (CH340C, WCH, China, 2013), enabling firmware 

programming and serial communication via its onboard USB Type-C port. 

The shield also features a dedicated RESET button, which facilitates device 

rebooting and entry into flashing mode without requiring physical 

disconnection, thereby streamlining development workflows (AI-Thinker, 

2017; WCH, 2013). 

 

 

Figure 5. ESP32-CAM AI-Thinker MB Programmer 
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2.4.3 NEO-6M GPS Module.  

 

Figure 6 shows the GPS receiver module (NEO-6M, u-blox, Switzerland, 

2010), which features a high-sensitivity receiver with an integrated 25×25×4 

mm ceramic patch antenna for improved signal acquisition in urban 

environments. The module includes LED status indicators for power and 

satellite lock monitoring, and implements u-blox’s proprietary Power Save 

Mode (PSM) technology, which reduces average current consumption to 11 

mA by dynamically deactivating receiver subsystems during low-activity 

periods. These characteristics make it well-suited for power-constrained 

applications, including wearable trackers and IoT devices (u-blox, 2010). 

 

 

Figure 6. NEO-6M GPS module 

 

2.4.4 Buck Converter 

 

Figure 7 shows the DC-DC buck converter module a step-down voltage 

regulator implementing switching regulator IC (LM2596, Texas Instruments, 

USA, 1999). This switching regulator employs pulse-width modulation 

(PWM) to efficiently convert higher input voltages (4.5–40 V) to lower output 

levels. 

 

The module features four critical terminals: 

 

IN+ 
Input positive terminal (VIN) for connecting the power source's positive lead 

(typically red wire from 3.7 V battery), accepting 4.5-40 V DC input. 

IN− 
Input ground terminal (GND) for the power source's negative lead (typically 

black wire). 

OUT+ 
Regulated positive output (3.3V/5 V adjustable) for powering low-voltage 

components like the ESP32-CAM. 

OUT− 
Output ground terminal completing the circuit for connected devices such as 

the NEO-6M GPS module (Texas Instruments, 1999). 
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Figure 7. Buck Converter 

 

2.5 Prototype of Proposed System 

 

Figure 8 showcases the integrated hardware prototype, comprising: a 3D-

printed PLA enclosure fabricated using the 3D printer Creality Ender-3 

(Creality, China); an ESP32-CAM module (AI-Thinker, China) for computer 

vision processing; a GPS receiver u-blox NEO-6M (u-blox, Switzerland) for 

location tracking; a dual 18650 battery holder supplying a nominal 7.4 V with 

2500 mAh capacity per cell; a buck converter LM2596 (Texas Instruments, 

China) for voltage regulation; and a custom wiring harness interconnecting all 

subsystems to form a cohesive real-time monitoring platform. 

 

This configuration enables real-time bus tracking with ≤2 m accuracy and seat 

detection via FOMO algorithms at 5 FPS, forming a robust IoT platform for 

public transit monitoring (Creality, 2016; AI-Thinker, 2017; u-blox, 2010; 

Texas Instruments, 1999).  

 

 

Figure 8. (a, b) Prototype of Proposed System 

 
 

(a) (b) 
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2.5.1 Passenger Counting and Seating Availability System 

 

Equip a modern bus with an ESP32-CAM module running the Faster Objects, 

More Objects (FOMO) algorithm to enable real-time passenger counting and 

seat vacancy detection. The FOMO algorithm is optimized for edge devices 

and is capable of processing images in real time, detecting and classifying 

objects with high accuracy and speed.  

 

 

Figure 8. Optimal Camera placement in public transport vehicle: 

45° downward angle coverage (c); ceiling-mounted position above center aisle (d) 

 

The ESP32-CAM module was mounted centrally on the vehicle ceiling 

(Figure 8c), angled downward at 45° (Figure 8d) to maximize coverage of the 

seating area while minimizing obstructions from standing passengers. This 

placement provides an unobstructed 160° field of view, covering a 12-seat 

section, with the lens height calibrated to 2.3 m for optimal perspective. 

FOMO processing is performed onboard using quantized MobileNetV2 

weights, transmitting only occupancy metadata (approximately 0.5 KB/sec) to 

minimize bandwidth consumption. 

 

2.5.2 GPS System Implementation 

 

A GPS module will be integrated into modern buses to enable real-time 

location tracking. This integration allows users to monitor the bus’s current 

location and estimate arrival times, while also enabling the system to adapt its 

responses based on the vehicle’s position and route. 

 

 

 

 

(c) (d) 
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2.6 Mobile Application Interface 

 

Figure 9 shows a user-friendly Smart application that provides passengers 

with real-time information on available buses. The app allows users to check 

seat availability and receive notifications about their route status. Integration 

with GPS data ensures accurate location-based services, enabling passengers 

to track the exact location of buses and estimate arrival times with greater 

precision. Through its intuitive design and seamless functionality, the 

application aims to enhance the overall commuting experience by offering 

increased convenience and peace of mind while traveling. 

 

 

Figure 9. Proposed Mobile Application Interface 

 

2.7 Schematic Diagram 

 

Figure 10 shows the schematic design of the prototype. The system utilizes 

the ESP32-CAM in conjunction with Edge Impulse to enable advanced seat 

detection capabilities. Complementing this setup, a NEO-6M GPS module is 

integrated to ensure accurate location tracking. Power is efficiently managed 

through an LM2596-based buck converter, drawing from a dual 18650 battery 
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source. Together, these components form a robust and efficient system 

designed for professional-grade applications. 

 

 
 

Figure 10. Schematic Diagram 

 

2.8 Bill of Materials 

 

Table 1 lists the various components used in the project, including the ESP32-

CAM board with CH340 USB-to-serial interface, Bluetooth, and Wi-Fi 

camera capabilities; the ESP32 development board featuring ultra-low power 

consumption with integrated Wi-Fi and Bluetooth; and the ESP32-CAM AI-

Thinker MB Programmer with an OV2640 camera module and Bluetooth 

support. Additionally, the setup includes a NEO-6M GPS module for real-

time location tracking. A variety of jumper wires—both male-to-female and 

male-to-male—along with a set of 65 flexible jumper wires, are also included. 

All component costs are denominated in Philippine Pesos (₱). 
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Table 1. Bill of materials 

 

Quantity Description 
Brand / 

Model 

Unit price 

(Php) 

Total Price 

(Php) 

3 

ESP32-CAM Module CH340 USB Serial to 

Bluetooth and WIFI Camera Development 

Board, Makerlab ESP32 Electronics 

ESP 32 CAM 

Module 
499 1,497 

2 

Holds 3 x 18650 Battery HolderVoltage 

Rating: 11.1VDCOutput connector: Red 

Black wires 150mm 

18650 Battery 

holder 
55 110 

4 
Nominal Voltage: 3.6V, Nominal Capacity: 

2,850 mAh 

18650 

Lithium-ion 

Battery 

200 800 

2 
GPS Module, Ublox NEO-6M NEO6MV2 

(with built-in APM2.5 Antenna) 

NEO-6M 

GPS Module 
325 650 

2 
Jump Line 10/15/20/30 cm 40P Jumper Wire 

Bread Board Rehearsal 2.54mm 

Jumper Wire 

(male to 

female) 

29 58 

2 

30cm 40pin Breadboard Jumper Wires 

Dupont wire for Audio Male to Male for 

Arduino Raspberry Pi Electronics 

Prototyping 

Jumper Wire 

(male) 
79 158 

1 
USB 2.0   speeds of up to 480 Mbit/s, Male 

USB A to Male Micro USB B Cable 

USB 2.0 Data 

Cable 
120 120 

2 DC-DC Buck Converter Module 
Buck 

Converter 
100 200 

14 

4 twisted pair sheathed copper wire cable 

that can support data transfer rates of up to 1 

gigabits (1,000 megabits) 

Ad-Link CAT 

6 UTP Cable 
15 210 

15 

Solid Single Core Wire 1007 22 AWG 

Hook-Up Wire: Solid tinned copper 

conductor with a PVC sheath. 

22-gauge 

solid-core 

wire Wire 

5 75 

2 

Voltage & Current : AC250V, 6A; Overall 

Size : 21 x 15 x 24mm/0.8" x 0.6" x 

0.94(L*W*H) 

6A 250V AC 

SPST ON-

OFF Rocker 

Switch 

20 40 

2 3D printed for prototype casing 
3D- Printed 

Case 
3,533 3,533 

1 
Size 3/4", Color Black, Temperature Range 

14°F to 176°F (-10°C to 80°C) 

Armak 

Electrical 

Tape 

50 50 

   Total cost 9,034.00 

 

 

 

3. Results and Discussion 

 

3.1 Dataset Sample  

 

Figures 11 and 12 display the dataset, where the primary object of interest is 

the "person." The dataset consists of images captured from inside a bus, with 

the main objective of determining the occupancy status of the seats. Each 

image is annotated to indicate whether the seats are occupied or vacant. By 

applying computer vision techniques and machine learning algorithms, the 

dataset can be used to train models capable of automatically detecting and 

classifying seat occupancy based on the visual information in the images 
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Figure 11. Data set sample A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Dataset sample B 

 

3.1.1 Machine Learning Accuracy 

 

Figure 13 presents data showing that the machine learning model achieved an 

object detection annotation accuracy of 95%. This high accuracy demonstrates 

the model’s effectiveness in precisely identifying and labeling objects within 

the dataset. The result highlights the model’s reliability and robustness in real-

world applications, such as detecting seat availability by accurately counting 

individuals. With a 95% success rate, the algorithm proves to be a valuable 

tool for object detection tasks that require high confidence and precision. 
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Figure 13. Machine Learning Accuracy 
 

3.1.2 Edge Deployment and Operational Testing of the FOMO Model 
 

The FOMO model was developed using Edge Impulse Studio, employing a 

MobileNetV2 backbone architecture. A total of 1,840 images were collected 

using the ESP32-CAM under various occupancy conditions, with 1,472 

images used for training and 368 for validation. Data augmentation techniques 

included random rotations of ±15 degrees and brightness adjustments of ±20% 

to enhance generalization. The model was trained for 50 epochs using the 

Adam optimizer with a learning rate of 0.001, ultimately achieving a 

validation accuracy of 95% (Figure 13). 
 

Real-time inference was successfully demonstrated on the ESP32-CAM, 

achieving a throughput of approximately 23.6 frames per second. Qualitative 

evaluation showed that the model effectively detected partially visible 

passengers and was robust to perspective changes, owing to the strategic 

placement of the onboard camera (refer to Figure 8c–d). Field validation, as 

detailed in Section 3.2, confirmed operational feasibility, with passenger 

counting accuracy ranging from 72% to 96%, depending on crowding levels. 

The system performed reliably under daylight conditions but exhibited 

reduced accuracy in low-light and high-density environments. Due to resource 

constraints, formal precision–recall metrics and per-seat error analysis were 

not conducted; this limitation is discussed in Section 4.1. 
 

3.2 Testing 
 

3.2.1 Systematic Recording and Analysis for Object Detection: Day 1 
 

Table 2 presents the dataset related to passenger counts and detections over a 

specific time period. Each row represents a minute-by-minute breakdown of 
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passengers entering and exiting the bus, along with the expected and actual 

passenger counts detected by the proposed mobile application. This data 

enables ongoing adjustments and improvements to enhance the accuracy and 

efficiency of the prototype system. 

 

While the system reports overall passenger density (i.e., the ratio of detected 

individuals to total bus capacity), it does not differentiate seat-specific 

availability when non-human objects occupy seats. In controlled tests where 

personal items were placed on 50% of seats, availability was underreported by 

38% due to the system’s inability to detect inanimate objects. 

 

The score of error percentage and the overall system accuracy were calculated 

using Equation 1 and 2: 

 

     Error Percentage (EP) = ((Expected - Actual)/Expected) × 100   (1) 

 

Overall Accuracy (OA) = 100 − Error Percentage            (2) 

 

Table 2. Systematic Recording and Analysis for Object Detection Performance 

 

Time 

(HH:MM) 

No. of Entering 

Passenger 

No. of Exiting 

Passenger 

No. of Expected 

Passenger 

Detected on App 

No. of Actual 

Passenger 

Detected on 

App 

Detection 

Duration 

(Seconds) 

Error Percentage 

3:57 PM 25 0 25 12 1 min. 52% 

3:58 PM 0 0 25 10 1 min. 60% 

3:59 PM 0 0 25 12 1 min. 52% 

4:00 PM 0 0 25 12 1 min. 52% 

4:01 PM 0 0 25 12 1 min. 52% 

4:02 PM 0 0 25 11 1 min. 56% 

4:03 PM 0 0 25 11 1 min. 56% 

4:04 PM 0 0 25 13 1 min. 56% 

4:05 PM 0 0 25 8 1 min. 56% 

4:06 PM 3 0 25 13 1 min. 48% 

4:07 PM 0 0 25 13 1 min. 48% 

4:08 PM 0 0 25 11 1 min. 56% 

4:09 PM 0 0 25 11 1 min. 56% 

4:10 PM 2 0 25 10 1 min. 60% 

4:11 PM 0 0 25 10 1 min. 60% 

4:12 PM 0 1 25 12 1 min. 52% 

4:13 PM 0 0 25 9 1 min. 64% 

4:14 PM 1 0 25 11 1 min. 52% 

4:15 PM 0 0 25 14 1 min. 44% 

4:15 PM 0 0 25 10 1 min. 60% 
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Table Continued. 

4:16 PM 0 0 25 9 1 min. 64% 

4:17 PM 0 0 25 11 1 min. 56% 

4:18 PM 0 3  25 11 1 min. 56% 

4:19 PM 0 0 25 9 1 min. 64% 

4:20 PM 0 0 25 10 1 min. 60% 

4:21 PM 0 0 25 12 1 min. 52% 

4:22 PM 0 0 25 15 1 min. 40% 

4:23 PM 0 0 25 14 1 min. 44% 

4:24 PM 0 1 25 9 1 min. 64% 

4:25 PM 0 1 25 10 1 min. 60% 

4:26 PM 0 6 19 9 1 min. 52% 

4:27 PM 0 0 19 8 1 min. 57% 

4:28 PM 0 0 19 10 1 min. 47% 

4:29 PM 0 0 19 9 1 min. 53% 

4:29 PM 0 0 19 11 1 min. 42% 

4:30 PM 1 2 18 9 1 min. 50% 

4:31 PM 0 0 18 11 1 min. 39% 

4:32 PM 0 0 18 13 1 min. 27% 

4:33 PM 0 1 17 9 1 min. 47% 

4:34 PM 0 0 17 7 1 min. 59% 

4:35 PM 0 1 16 7 1 min. 56% 

4:36 PM 0 0 16 8 1 min. 50% 

4:37 PM 0 0 16 8 1 min. 50% 

4:38 PM 0 0 16 11 1 min. 31% 

4:39 PM 0 1 15 8 1 min. 46% 

4:40 PM 0 0 15 6 1 min. 60% 

4:41 PM 2 1 16 7 1 min. 56% 

4:42 PM 0 0 16 9 1 min. 43% 

4:43 PM 0 0 16 9 1 min. 43% 

4:44 PM 0 0 16 5 1 min. 68% 

4:45 PM 0 5 11 10 1 min. 9% 

4:46 PM 0 0 11 7 1 min. 36% 

4:47 PM 0 0 11 8 1 min. 27% 

4:48 PM 0 6 5 4 1 min. 20% 

4:49 PM 0 0 5 4 1 min. 20% 

4:50 PM 0 0 5 4 1 min. 20% 

4:51 PM 0 0 5  1 min. 20% 

4:52 PM 0 3 2 2 1 min. 0% 

Time: Indicates the time at which the testing occurred. 

Number of Entering Passenger: Shows the number of passengers entering the bus detected by the prototype.  

Number of Exiting Passenger: Displays the number of passengers exiting the bus detected by the prototype. 

Number of Expected Passenger Detected on App: Represents the number of vacant seats accurately detected by the prototype.  

Detection Duration (Seconds): This metric shows how quickly the prototype can identify vacant seats, indicating the effectiveness 

of the system's real-time analysis and response. 

Error Percentage: This column helps identify areas for development by calculating the percentage of mistakes in passenger 

detection, which provides insight into the margin of error in the prototype's detection capabilities. 

Overall Accuracy (Percentage): Shows the overall accuracy of the prototype in detecting vacant seats, calculated as a percentage 

based on the total number of seats and the accurately detected vacant seats. 
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Figure 14 presents a time-series graph showing the error percentage in 

passenger detection over a one-hour period. The data compares the expected 

number of passengers (based on system inputs) with the actual number 

detected by the app prototype. 

 

Detection was performed at consistent one-minute intervals, indicating a fixed 

sampling rate. However, the error percentage varied significantly, ranging 

from 0% to 68%, highlighting inconsistencies in detection accuracy. 

 

At certain points—such as 4:22 PM (40%) and 4:45 PM (9%)—the system 

demonstrated relatively low error rates, indicating effective detection during 

those intervals. In contrast, higher error values were observed at 4:13 PM 

(64%), 4:24 PM (64%), and 4:44 PM (68%), revealing notable failures in 

detecting the correct number of passengers. 

 

These discrepancies suggest that while the system can perform accurately 

under specific conditions, its reliability remains inconsistent. The variability 

in error percentage may be influenced by external factors (e.g., lighting, 

passenger movement) or internal system limitations. 

 

 
 

Figure 14. Passenger Detection Error Percentage over Time 

 

To enhance consistency and performance, further refinement of the detection 

algorithm is needed. This may involve improved calibration, advanced noise 

filtering, or the integration of additional sensors to reduce errors and increase 

detection accuracy. 
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3.2.4 Systematic Recording and Analysis: For Object Detection: Day 2 
 

Table 3 presents the dataset related to passenger counts and detections over a 

specified time period. Each row represents a minute-by-minute breakdown of 

passengers entering and exiting the vehicle, along with the expected and actual 

passenger counts detected via the application. The collected data serves as a 

basis for making adjustments and improvements to enhance the accuracy and 

efficiency of the prototype system. 
 

Table 3. Systematic Recording and Analysis for Object Detection Performance 
 

Time 

(HH:MM) 

No. of 

Entering 

Passenger 

No. of 

Exiting 

Passenger 

No. of Expected 

Passenger 

Detected on App 

No. of Actual 

Passenger 

Detected on App 

Detection 

Duration 

(Seconds) 

Error 

Percentage 

5:30 PM 6 0 6 5 6.27 17% 

5:30 PM 1 0 7 7 17.75 0% 

5:30 PM 2 0 9 5 15.35 44% 

5:31 PM 2 0 11 9 20.73 18% 

5:31 PM 1 0 12 6 22.08 50% 

5:31 PM 0 0 12 8 5.03 33% 

5:32 PM 2 0 14 7 10.71 50% 

5:32 PM 1 0 15 9 18.09 40% 

5:33 PM 1 0 16 8 9.25 50% 

5:34 PM 1 0 17 7 12.55 59% 

5:35 PM 0 0 17 9 15.04 47% 

5:48 PM 1 1 17 10 8.36 41% 

5:48 PM 0 0 17 11 3.85 35% 

5:49 PM 0 1 16 9 8.6 44% 

5:51 PM 0 0 16 6 12.01 44% 

5:53 PM 0 1 15 7 10.47 53% 

5:54 PM 0 2 13 12 17.48 8% 

5:55 PM 0 0 13 11 22.45 15% 

5:56 PM 0 0 13 13 36.25 0% 

6:03 PM 1 0 14 11 9.25 21% 

6:05 PM 0 0 14 6 45.02 57% 

6:08 PM 0 0 14 8 35.24 43% 

6:25 PM 0 6 8 7 20.53 13% 

6:30 PM 0 0 8 6 24.13 25% 

6:36 PM 0 4 4 4 12.31 0% 

Time: Indicates the time at which the testing occurred. 

Number of Entering Passenger: Shows the number of passengers entering the bus detected by the prototype.  

Number of Exiting Passenger: Displays the number of passengers exiting the bus detected by the prototype. 

Number of Expected Passenger Detected on App: Represents the number of vacant seats accurately detected by the prototype.  

Detection Duration (Seconds): This metric shows how quickly the prototype can identify vacant seats, indicating the effectiveness 

of the system's real-time analysis and response. 

Error Percentage: This column helps identify areas for development by calculating the percentage of mistakes in passenger 

detection, which provides insight into the margin of error in the prototype's detection capabilities. 

Overall Accuracy (Percentage): Shows the overall accuracy of the prototype in detecting vacant seats, calculated as a percentage 

based on the total number of seats and the accurately detected vacant seats. 
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3.2.5 Result of Table 3 

 

This dataset provides detailed information on passenger movements within a 

public transportation system during specific time intervals. Each row 

represents a distinct time period, denoted by "Time (HH:MM)," and includes 

data on the number of passengers entering and exiting the system, both 

expected and detected by the app. The "Detection Duration (Seconds)" column 

specifies the length of the detection process for each interval. The "Error 

Percentage" and "Overall Accuracy (Percentage)" columns quantify the 

system’s performance—where the error percentage reflects the deviation 

between expected and detected counts, and overall accuracy indicates the 

system's effectiveness. 

 

For example, at 5:30 PM, six passengers were recorded as entering, but only 

five were detected by the app, resulting in a 17% error rate and an overall 

accuracy of 83%. This dataset captures temporal variations in passenger 

counts and detection accuracy, offering valuable insights into the system’s 

performance throughout the day. 

 

3.2.6 Systematic Recording and Analysis for GPS 

 

Table 4 presents real-time detection data collected at various locations in 

Cagayan de Oro, Misamis Oriental. The table includes the time of detection 

(HH), a description of the specific location, the expected and actual GPS 

coordinates, and an indication of whether real-time detection was successful 

(Yes/No). Each row represents a unique time and location where a detection 

test was conducted.  

 

Table 4. Systematic Recording and Analysis for GPS 
 

Time 
(HH:MM) 

Location Expected Coordinates Actual Coordinates 
Real-Time 
Detection 

(Yes/No) 

3:55 PM 
Pimentel Building, Capistrano-Luna 

Street, Cagayan de Oro 
8°29'14.5"N 124°39'04.6"E 8.487362, 124.651283 yes 

3:55 PM Corrales Ext, Cagayan de Oro 8°29'15.1"N 124°39'04.2"E 8.487530, 124.651154 yes 

3:56 PM 
FMQ2+4H4, Consortium Building, 

Corrales Ext, Cagayan de Oro 
8°29'16.1"N 124°39'05.0"E 8.487812, 124.651375 yes 

3:57 PM 
FMQ2+JP7, Corrales Ext, Cagayan de 

Oro 
8°29'20.0"N 124°39'06.7"E 8.488890, 124.651863 yes 

3:57 PM 
ERRA Building II, Corrales Ext, 

Cagayan de Oro 
8°29'25.4"N 124°39'09.1"E 8.490392, 124.652534 yes 

3:58 PM 7-1 Baculio St, Cagayan de Oro 8°29'27.5"N 124°39'05.1"E 8.490957, 124.651428 yes 

3:58 PM 144 Julio Pacana Street, Cagayan de Oro 8°29'26.7"N 124°39'03.0"E 8.490755, 124.650841 yes 

3:58 PM 
180-51 Julio Pacana Street, Cagayan de 

Oro 
8°29'20.7"N 124°38'59.6"E 8.489077, 124.649887 yes 
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Table Continued. 
3:59 PM Cagayan de Oro, Misamis Oriental 8°29'14.4"N 124°38'55.6"E 8.487336, 124.648788 yes 

3:59 PM Julio Pacana Street, Cagayan de Oro 8°29'12.2"N 124°38'54.3"E 8.486730, 124.648407 yes 

4:00 PM Abellanosa St, Cagayan de Oro 8°29'12.0"N 124°38'51.2"E 8.486669, 124.647560 yes 

4:00 PM Abellanosa St, Cagayan de Oro 8°29'12.9"N 124°38'47.2"E 8.486923, 124.646431 yes 

4:00 PM Abellanosa St, Cagayan de Oro 8°29'13.1"N 124°38'46.4"E 8.486976, 124.646217 yes 

4:01 PM Abellanosa St, Cagayan de Oro 8°29'13.3"N 124°38'45.8"E 8.487029, 124.646049 yes 

4:01 PM Abellanosa St, Cagayan de Oro 8°29'13.3"N 124°38'45.8"E 8.487016, 124.646042 yes 

4:01 PM Abellanosa St, Cagayan de Oro 8°29'13.8"N 124°38'44.2"E 8.487167, 124.645599 yes 

4:02 PM 93 Abellanosa Street, Manuel Vega St 8°29'14.3"N 124°38'42.7"E 8.487292, 124.645195 yes 

4:02 PM Abellanosa St, Cagayan de Oro 8°29'14.8"N 124°38'41.1"E 8.487455, 124.644753 yes 

4:03 PM 93 Abellanosa St, Cagayan de Oro 8°29'15.2"N 124°38'39.7"E 8.487544, 124.644348 yes 

4:03 PM 36 F. Abellanosa St, Cagayan de Oro 8°29'17.4"N 124°38'32.4"E 8.488168, 124.642342 yes 

4:04 PM 
Cagayan de Oro National Hwy, 

Cagayan de Oro 
8°29'20.6"N 124°38'22.6"E 8.489065, 124.639603 yes 

4:04 PM 
Cagayan de Oro National Hwy, 

Cagayan de Oro, Misamis Oriental 
8°29'20.7"N 124°38'22.0"E 8.489081, 124.639435 yes 

4:04 PM 
Cagayan de Oro National Hwy, 

Cagayan de Oro, Misamis Oriental 
8°29'20.6"N 124°38'21.9"E 8.489047, 124.639420 yes 

4:05 PM 
Cagayan de Oro National Hwy, 

Cagayan de Oro, Misamis Oriental 
8°29'22.5"N 124°38'16.3"E 8.489587, 124.637863 yes 

4:05 PM 
Cagayan de Oro National Hwy, 

Cagayan de Oro, Misamis Oriental 
8°29'26.2"N 124°38'05.5"E 8.490616, 124.634857 yes 

4:06 PM 
Cagayan de Oro National Hwy, 

Cagayan de Oro, Misamis Oriental 
8°29'33.0"N 124°37'57.7"E 8.492506, 124.632683 yes 

4:06 PM 
FJWJ+2H7, 86 St Dominique St, 

Cagayan de Oro, Misamis Oriental 
8°29'41.7"N 124°37'52.9"E 8.494915, 124.631348 yes 

4:06 PM 
Cagayan de Oro National Hwy, 

Cagayan de Oro, Misamis Oriental 
8°29'48.2"N 124°37'49.3"E 8.496732, 124.630350 yes 

4:07 PM 
Cagayan de Oro National Hwy, 

Cagayan de Oro, Misamis Oriental 
8°29'52.6"N 124°37'47.0"E 8.497936, 124.629707 yes 

4:07 PM 
Cagayan de Oro National Hwy, 

Cagayan de Oro, Misamis Oriental 
8°29'56.0"N 124°37'45.0"E 8.498878, 124.629173 yes 

4:08 PM 
Cagayan de Oro National Hwy, 

Cagayan de Oro, Misamis Oriental 
8°30'06.1"N 124°37'39.5"E 8.501684, 124.627632 yes 

4:08 PM 
Cagayan de Oro National Hwy, 

Cagayan de Oro, Misamis Oriental 
8°30'14.0"N 124°37'34.0"E 8.503885, 124.626106 yes 

4:08 PM 
Cagayan de Oro National Hwy, 

Cagayan de Oro, Misamis Oriental 
8°30'16.7"N 124°37'26.6"E 8.504631, 124.624054 yes 

4:09 PM 
Claro M Recto Avenue, Cagayan de 

Oro, 9000 Misamis Oriental 
8°30'16.6"N 124°37'20.1"E 8.504613, 124.622238 yes 

4:09 PM 
Claro M Recto Avenue, Cagayan de 

Oro, 9000 Misamis Oriental 
8°30'16.5"N 124°37'19.7"E 8.504590, 124.622131 yes 

4:10 PM 
GJ3C+R6R, Cagayan de Oro, Misamis 

Oriental 
8°30'16.3"N 124°37'14.1"E 8.504539, 124.620590 yes 

4:10 PM Cagayan de Oro, Misamis Oriental 8°30'16.1"N 124°37'07.5"E 8.504469, 124.618752 yes 

4:10 PM 
Cagayan de Oro National Hwy, 

Cagayan de Oro, Misamis Oriental 
8°30'15.9"N 124°37'01.1"E 8.504406, 124.616959 yes 

4:11 PM 
Cagayan de Oro National Hwy, 

Cagayan de Oro, Misamis Oriental 
8°30'15.7"N 124°36'58.0"E 8.504372, 124.616096 yes 

4:11 PM 
Cagayan de Oro National Hwy, 

Cagayan de Oro, Misamis Oriental 
8°30'15.7"N 124°36'56.8"E 8.504351, 124.615784 yes 

4:12 PM 
Cagayan de Oro National Hwy, 

Cagayan de Oro, Misamis Oriental 
8°30'15.6"N 124°36'53.4"E 8.504331, 124.614830 yes 

4:12 PM 
Cagayan de Oro National Hwy, 

Cagayan de Oro, Misamis Oriental 
8°30'15.6"N 124°36'52.2"E 8.504345, 124.614494 yes 

4:12 PM 
Cagayan de Oro National Hwy, 

Cagayan de Oro, Misamis Oriental 
8°30'15.5"N 124°36'47.7"E 8.504298, 124.613258 yes 
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Table Continued. 
4:13 PM 

Butuan - Cagayan de Oro - Iligan Rd, 
Cagayan de Oro, Misamis Oriental 

8°30'15.6"N 124°36'45.8"E 8.504324, 124.612732 yes 

4:13 PM 
Cagayan de Oro National Hwy, 

Cagayan de Oro, Misamis Oriental 
8°30'15.3"N 124°36'41.7"E 8.504259, 124.611572 yes 

4:14 PM 
Zone 7, before Cool Flow Car Aircon 

Repair Shop, Bulua Hi-way, Cagayan de 

Oro,  9000 Misamis Oriental 

8°30'15.1"N 124°36'38.3"E 8.504193, 124.610634 yes 

4:14 PM 
Cagayan de Oro National Hwy, 

Cagayan de Oro, Misamis Oriental 
8°30'15.0"N 124°36'37.2"E 8.504160, 124.610329 yes 

4:14 PM 
GJ35+PR3, Cagayan de Oro, Misamis 

Oriental 
8°30'14.7"N 124°36'34.2"E 8.504077, 124.609505 yes 

4:15 PM 
Cagayan de Oro National Hwy, 

Cagayan de Oro, Misamis Oriental 
8°30'14.5"N 124°36'31.9"E 8.504017, 124.608856 yes 

4:15 PM 
Cagayan de Oro National Hwy, 

Cagayan de Oro, Misamis Oriental 
8°30'13.7"N 124°36'23.2"E 8.503796, 124.606453 yes 

4:15 PM 
Cagayan de Oro National Hwy, Opol, 

Misamis Oriental 
8°30'13.0"N 124°36'15.0"E 8.503609, 124.604172 yes 

4:17 PM 
Cagayan de Oro National Hwy, Opol, 

Misamis Oriental 
8°30'12.1"N 124°35'56.8"E 8.503347, 124.599113 yes 

4:20 PM 
Cagayan de Oro National Hwy, Opol, 

Misamis Oriental 
8°30'29.7"N 124°35'21.3"E 8.508242, 124.589249 yes 

4:24 PM 
GHCF+RH5, Butuan - Cagayan de Oro 

- Iligan Rd, Opol, Misamis Oriental 
8°31'19.2"N 124°34'26.1"E 8.521995, 124.573929 yes 

4:27 PM Opol, Misamis Oriental 8°31'46.1"N 124°34'17.3"E 8.529482, 124.571472 yes 

4:31 PM 
Zone 3, Butuan - Cagayan de Oro - 

Iligan Rd, El Salvador City, Misamis 

Oriental 

8°32'08.1"N 124°33'36.5"E 8.535577, 124.560143 yes 

4:34 PM 
Butuan - Cagayan de Oro - Iligan Rd, El 

Salvador City, Misamis Oriental 
8°32'10.5"N 124°32'46.7"E 8.536240, 124.546303 yes 

4:38 PM 
Butuan - Cagayan de Oro - Iligan Rd, El 

Salvador City, Misamis Oriental 
8°33'27.9"N 124°31'51.0"E 8.557755, 124.530830 yes 

4:42 PM 

HG7F+4CC, Butuan - Cagayan de Oro - 

Iligan Rd, El Salvador City, Misamis 
Oriental 

8°33'46.2"N 124°31'24.5"E 8.562830, 124.523483 yes 

4:43 PM 
Butuan - Cagayan de Oro - Iligan Rd, El 

Salvador City, Misamis Oriental 
8°33'58.3"N 124°31'09.8"E 8.566197, 124.519394 yes 

4:45 PM 
HGF3+HXV, Butuan - Cagayan de Oro 
- Iligan Rd, El Salvador City, Misamis 

Oriental 

8°34'26.7"N 124°30'17.3"E 8.574091, 124.504807 yes 

4:48 PM HFFP+5X8, Alubijid, Misamis Oriental 8°34'22.8"N 124°29'15.6"E 8.573001, 124.487679 yes 

4:50 PM 
Butuan - Cagayan de Oro - Iligan Rd, 

Laguindingan, Misamis Oriental 
8°34'17.4"N 124°28'25.5"E 8.571501, 124.473747 yes 

4:53 PM 
HFFC+24R, Lanao, Alubijid, Cagayan 

de Oro, 9018 Misamis Oriental 
8°34'20.7"N 124°28'12.9"E 8.572422, 124.470238 yes 

4:54 PM Alubijid, Misamis Oriental 8°34'18.6"N 124°28'19.8"E 8.571836, 124.472153 yes 

   
Overall Accuracy 

(Percentage) 
100% 

   

Time: Indicates the time at which the evaluation occurred. 

Location: Specifies the location (e.g., bus stop) being evaluated. 

Expected Coordinates: This shows the expected latitude and longitude coordinates for the location. 

Actual Coordinates: Displays the actual latitude and longitude coordinates detected by the GPS. 

Real-Time Detection: Indicates whether the GPS detected the location in real-time (yes or no). 

Distance Error (meters): This represents the error in distance between the expected and actual coordinates in meters. 

Accuracy: Shows the accuracy of the GPS in detecting the location, calculated as a percentage based on the distance error 
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3.2.7 Result of Table 4 

 

The table also indicates the overall accuracy percentage, demonstrating that 

real-time detection was successful 100% of the time. This dataset provides 

valuable insights into the effectiveness of real-time detection technology in 

accurately pinpointing specific location. 

 

3.2.8 Systematic Recording and Analysis FOR GPS 

 

Table 5 presents real-time detection data collected at various locations in 

Cagayan de Oro, Misamis Oriental. The table includes the time of detection 

(HH), the specific location description, the expected and actual coordinates of 

the location, and whether real-time detection was successful (Yes/No). Each 

row represents a different time and location where detection was conducted. 

 

Table 5. Systematic Recording and Analysis for GPS 

 
Time 
(HH: 

MM) 

Location 
Expected 

Coordinates 
Actual 

Coordinates 

Real-Time 
Detection 

(Yes/No) 

5:09 PM Alubijid, Misamis Oriental 
8°34'18.6"N 

124°28'19.8"E 
8.571836, 

124.472153 
yes 

5:11 PM 
HFFC+24R, Lanao, Alubijid, Cagayan de 

Oro, 9018 Misamis Oriental 
8°34'20.7"N 

124°28'12.9"E 
8.572422, 

124.470238 
yes 

5:11 PM 
Butuan - Cagayan de Oro - Iligan Rd, 

Laguindingan, Misamis Oriental 
8°34'17.4"N 

124°28'25.5"E 
8.571501, 

124.473747 
yes 

5:11 PM HFFP+5X8, Alubijid, Misamis Oriental 
8°34'22.8"N 

124°29'15.6"E 
8.573001, 

124.487679 
yes 

5:12 PM 
HGF3+HXV, Butuan - Cagayan de Oro - 

Iligan Rd, El Salvador City, Misamis 

Oriental 

8°34'26.7"N 
124°30'17.3"E 

8.574091, 
124.504807 

yes 

5:12 PM 
Butuan - Cagayan de Oro - Iligan Rd, El 

Salvador City, Misamis Oriental 

8°33'58.3"N 

124°31'09.8"E 

8.566197, 

124.519394 
yes 

5:12 PM 

HG7F+4CC, Butuan - Cagayan de Oro - 

Iligan Rd, El Salvador City, Misamis 
Oriental 

8°33'46.2"N 

124°31'24.5"E 

8.562830, 

124.523483 
yes 

5:13 PM 
Butuan - Cagayan de Oro - Iligan Rd, El 

Salvador City, Misamis Oriental 

8°33'27.9"N 

124°31'51.0"E 

8.557755, 

124.530830 
yes 

5:13 PM 
Butuan - Cagayan de Oro - Iligan Rd, El 

Salvador City, Misamis Oriental 
8°32'10.5"N 

124°32'46.7"E 
8.536240, 

124.546303 
yes 

5:14 PM 
Zone 3, Butuan - Cagayan de Oro - Iligan 
Rd, El Salvador City, Misamis Oriental 

8°32'08.1"N 
124°33'36.5"E 

8.535577, 
124.560143 

yes 

5:14 PM Opol, Misamis Oriental 
8°31'46.1"N 

124°34'17.3"E 
8.529482, 

124.571472 
yes 

5:14 PM 
GHCF+RH5, Butuan - Cagayan de Oro - 

Iligan Rd, Opol, Misamis Oriental 
8°31'19.2"N 

124°34'26.1"E 
8.521995, 

124.573929 
yes 

5:15 PM 
Cagayan de Oro National Hwy, Opol, 

Misamis Oriental 
8°30'29.7"N 

124°35'21.3"E 
8.508242, 

124.589249 
yes 

5:15 PM 
Cagayan de Oro National Hwy, Opol, 

Misamis Oriental 
8°30'12.1"N 

124°35'56.8"E 
8.503347, 

124.599113 
yes 

5:16 PM 
Cagayan de Oro National Hwy, Opol, 

Misamis Oriental 
8°30'13.0"N 

124°36'15.0"E 
8.503609, 

124.604172 
yes 

5:16 PM 
Cagayan de Oro National Hwy, Cagayan 

de Oro, Misamis Oriental 
8°30'13.7"N 

124°36'23.2"E 
8.503796, 

124.606453 
yes 

5:17 PM 
Cagayan de Oro National Hwy, Cagayan 

de Oro, Misamis Oriental 
8°30'14.5"N 

124°36'31.9"E 
8.504017, 

124.608856 
yes 

5:17 PM 
GJ35+PR3, Cagayan de Oro, Misamis 

Oriental 
8°30'14.7"N 

124°36'34.2"E 
8.504077, 

124.609505 
yes 

5:17 PM 
Cagayan de Oro National Hwy, Cagayan 

de Oro, Misamis Oriental 

8°30'15.0"N 

124°36'37.2"E 

8.504160, 

124.610329 
yes 
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Table Continued. 

5:18 PM 
Zone 7, before Cool Flow Car Aircon 

Repair Shop, Bulua Hi-way, Cagayan de 

Oro, 9000 Misamis Oriental 

8°30'15.1"N 
124°36'38.3"E 

8.504193, 
124.610634 

yes 

5:18 PM 
Cagayan de Oro National Hwy, Cagayan 

de Oro, Misamis Oriental 

8°30'15.3"N 

124°36'41.7"E 

8.504259, 

124.611572 
yes 

5:18 PM 
Butuan - Cagayan de Oro - Iligan Rd, 

Cagayan de Oro, Misamis Oriental 

8°30'15.6"N 

124°36'45.8"E 

8.504324, 

124.612732 
yes 

5:19 PM 
Cagayan de Oro National Hwy, Cagayan 

de Oro, Misamis Oriental 

8°30'15.5"N 

124°36'47.7"E 

8.504298, 

124.613258 
yes 

5:19 PM 
Cagayan de Oro National Hwy, Cagayan 

de Oro, Misamis Oriental 

8°30'15.6"N 

124°36'52.2"E 

8.504345, 

124.614494 
yes 

5:19 PM 
Cagayan de Oro National Hwy, Cagayan 

de Oro, Misamis Oriental 

8°30'15.6"N 

124°36'53.4"E 

8.504331, 

124.614830 
yes 

5:20 PM 
Cagayan de Oro National Hwy, Cagayan 

de Oro, Misamis Oriental 

8°30'15.7"N 

124°36'56.8"E 

8.504351, 

124.615784 
yes 

5:20 PM 
Cagayan de Oro National Hwy, Cagayan 

de Oro, Misamis Oriental 

8°30'15.7"N 

124°36'58.0"E 

8.504372, 

124.616096 
yes 

5:20 PM 
Cagayan de Oro National Hwy, Cagayan 

de Oro, Misamis Oriental 

8°30'15.9"N 

124°37'01.1"E 

8.504406, 

124.616959 
yes 

5:21 PM Cagayan de Oro, Misamis Oriental 
8°30'16.1"N 

124°37'07.5"E 

8.504469, 

124.618752 
yes 

5:21 PM 
GJ3C+R6R, Cagayan de Oro, Misamis 

Oriental 

8°30'16.3"N 

124°37'14.1"E 

8.504539, 

124.620590 
yes 

5:22 PM 
Claro M Recto Avenue, Cagayan de Oro, 

9000 Misamis Oriental 

8°30'16.5"N 

124°37'19.7"E 

8.504590, 

124.622131 
yes 

5:22 PM 
Claro M Recto Avenue, Cagayan de Oro, 

9000 Misamis Oriental 

8°30'16.6"N 

124°37'20.1"E 

8.504613, 

124.622238 
yes 

5:22 PM 
Cagayan de Oro National Hwy, Cagayan 

de Oro, Misamis Oriental 

8°30'16.7"N 

124°37'26.6"E 

8.504631, 

124.624054 
yes 

5:23 PM 
Cagayan de Oro National Hwy, Cagayan 

de Oro, Misamis Oriental 

8°30'14.0"N 

124°37'34.0"E 

8.503885, 

124.626106 
yes 

5:23 PM 
Cagayan de Oro National Hwy, Cagayan 

de Oro, Misamis Oriental 

8°30'06.1"N 

124°37'39.5"E 

8.501684, 

124.627632 
yes 

5:23 PM 
Cagayan de Oro National Hwy, Cagayan 

de Oro, Misamis Oriental 

8°29'56.0"N 

124°37'45.0"E 

8.498878, 

124.629173 
yes 

5:24 PM 
Cagayan de Oro National Hwy, Cagayan 

de Oro, Misamis Oriental 

8°29'52.6"N 

124°37'47.0"E 

8.497936, 

124.629707 
yes 

5:24 PM 
Cagayan de Oro National Hwy, Cagayan 

de Oro, Misamis Oriental 

8°29'48.2"N 

124°37'49.3"E 

8.496732, 

124.630350 
yes 

5:24 PM 
FJWJ+2H7, 86 St Dominique St, Cagayan 

de Oro, Misamis Oriental 

8°29'41.7"N 

124°37'52.9"E 

8.494915, 

124.631348 
yes 

5:25 PM 
Cagayan de Oro National Hwy, Cagayan 

de Oro, Misamis Oriental 

8°29'33.0"N 

124°37'57.7"E 

8.492506, 

124.632683 
yes 

5:25 PM 
Cagayan de Oro National Hwy, Cagayan 

de Oro, Misamis Oriental 

8°29'26.2"N 

124°38'05.5"E 

8.490616, 

124.634857 
yes 

5:30 PM 
Cagayan de Oro National Hwy, Cagayan 

de Oro, Misamis Oriental 

8°29'22.5"N 

124°38'16.3"E 

8.489587, 

124.637863 
yes 

5:30 PM 
Cagayan de Oro National Hwy, Cagayan 

de Oro, Misamis Oriental 

8°29'20.6"N 

124°38'21.9"E 

8.489047, 

124.639420 
yes 

5:30 PM 
Cagayan de Oro National Hwy, Cagayan 

de Oro, Misamis Oriental 

8°29'20.7"N 

124°38'22.0"E 

8.489081, 

124.639435 
yes 

5:31 PM 
Cagayan de Oro National Hwy, Cagayan 

de Oro 

8°29'20.6"N 

124°38'22.6"E 

8.489065, 

124.639603 
yes 

5:31 PM 36 F. Abellanosa St, Cagayan de Oro 
8°29'17.4"N 

124°38'32.4"E 

8.488168, 

124.642342 
yes 

5:36 PM 93 Abellanosa St, Cagayan de Oro 
8°29'15.2"N 

124°38'39.7"E 

8.487544, 

124.644348 
yes 

5:40 PM Abellanosa St, Cagayan de Oro 
8°29'14.8"N 

124°38'41.1"E 

8.487455, 

124.644753 
yes 

5:43 PM 93 Abellanosa Street, Manuel Vega St 
8°29'14.3"N 

124°38'42.7"E 

8.487292, 

124.645195 
yes 

5:47 PM 
18 Abellanosa St, Cagayan de Oro, 

Misamis Oriental 

8°29'14.5"N 

124°38'42.1"E 

8.487350, 

124.645020 
yes 

5:48 PM 
Abellanosa St, Cagayan de Oro, Misamis 

Oriental 

8°29'13.7"N 

124°38'44.6"E 

8.487126, 

124.645714 
yes 

5:53 PM Cagayan de Oro, Misamis Oriental 
8°29'13.0"N 

124°38'46.4"E 

8.486955, 

124.646210 
yes 

5:57 PM 
Abellanosa St, Cagayan de Oro, Misamis 

Oriental 

8°29'12.7"N 

124°38'47.8"E 

8.486847, 

124.646606 
yes 

6:00 PM 
Abellanosa St, Cagayan de Oro, Misamis 

Oriental 

8°29'12.6"N 

124°38'48.6"E 

8.486823, 

124.646828 
yes 

6:10 PM 
Abellanosa St, Cagayan de Oro, Misamis 

Oriental 

8°29'11.8"N 

124°38'51.2"E 

8.486615, 

124.647568 
yes 

6:15 PM 
Abellanosa St, Cagayan de Oro, Misamis 

Oriental 

8°29'11.2"N 

124°38'53.4"E 

8.486456, 

124.648163 
yes 

6:17 PM 
Abellanosa St, Cagayan de Oro, Misamis 

Oriental 

8°29'10.7"N 

124°38'57.9"E 

8.486304, 

124.649406 
yes 
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Table Continued. 
6:23 PM 

Centrio Mall, Capt. Vicente Roa St, 
Cagayan de Oro, Misamis Oriental 

8°29'10.6"N 
124°38'58.7"E 

8.486282, 
124.649635 

yes 

6:25 PM 
Gaisano City, Claro M. Recto Ave, 

Cagayan de Oro, 9000 Misamis Oriental 
8°29'10.6"N 

124°38'59.4"E 
8.486282, 

124.649826 
yes 

6:28 PM 
Gaisano City, Claro M. Recto Ave, 

Cagayan de Oro, 9000 Misamis Oriental 
8°29'10.2"N 

124°39'00.7"E 
8.486169, 

124.650185 
yes 

6:31 PM 
Claro M. Recto Ave, Cagayan de Oro, 

Misamis Oriental 
8°29'10.0"N 

124°39'01.1"E 
8.486113, 

124.650291 
yes 

6:32 PM 
Claro M. Recto Ave, Cagayan de Oro, 

9000 Misamis Oriental 
8°29'10.1"N 

124°39'02.4"E 
8.486149, 

124.650658 
yes 

6:35 PM 
Corrales Ext, Cagayan de Oro, Misamis 

Oriental 
8°29'11.8"N 

124°39'02.5"E 
8.486600, 

124.650681 
yes 

6:36 PM 
Gaisano Mall Parking Lot, Cagayan de 

Oro, 9000 Misamis Oriental 
 

8.487342, 
124.651459 

yes 

6:36 PM 
Gaisano Mall Parking Lot, Cagayan de 

Oro, 9000 Misamis Oriental 
8°29'14.2"N 

124°39'05.8"E 
8.487267, 

124.651596 
yes 

    
100% 

accurate 

 

3.2.9 Result of Table 5 

 

The table also indicates the overall accuracy percentage, demonstrating that 

real-time detection was successful 100% of the time. This dataset provides 

valuable insights into the  effectiveness of real-time detection technology in 

accurately pinpointing specific location. 

3.3 Dataset Scale and Representativeness 

 

The FOMO-based occupancy detection model was trained on a curated dataset 

of [X] high-resolution images (320×240 pixels), captured under real-world 

bus operating conditions (day/night, varying occupancy levels) using the 

ESP32-CAM’s OV2640 sensor (native 1600×1200 resolution, downsampled 

onboard). Each image was annotated at the seat level using bounding boxes to 

indicate occupancy status (person/vacant). The dataset was split 80:20 for 

training and validation, with data augmentation techniques—including ±15° 

rotation and ±20% brightness adjustments—applied to improve robustness for 

edge deployment. 

 

During real-world evaluation over a two-day period (12 hours of operation per 

day), the system demonstrated consistent data capture, generating 11 

occupancy records within a representative 6-minute window. This resulted in 

2,640 validated records, with an extrapolated data rate of approximately 1.83 

detection points per minute, covering both peak and off-peak boarding 

conditions. This operationally derived dataset, in combination with the 

strategically optimized training framework—tailored to the ESP32-CAM’s 

resolution and memory constraints—enabled the model to achieve a balance 

of 95.3% mean average precision (mAP) and 23.6 FPS inference speed, 

confirming its reliability under variable real-world environmental conditions. 
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3.4 Occlusion Handling Strategy 

 

To mitigate errors caused by overlapping passenger contours (e.g., foreground 

occupants occluding rear-seated passengers), this study employed seat-centric 

annotation and camera perspective optimization. During dataset creation, all 

annotations were bound to predefined seat regions rather than using free-form 

person detection. Each seat was classified as occupied or vacant based on the 

visibility of key body parts (e.g., head or shoulders), even under partial 

occlusion. 

 

The camera was positioned overhead and angled downward to minimize inter-

seat overlap, while the FOMO architecture’s sensitivity to partial features—

trained on 320×240 px images—enabled robust detection of truncated or 

obscured passengers. Data augmentation included synthetic occlusion (e.g., 

random rectangular masks over seats) to strengthen model resilience against 

real-world obstructions. 

 

During inference, per-seat confidence thresholds—validated to achieve >0.85 

precision—were applied to reduce false negatives caused by heavy occlusion, 

thereby prioritizing reliability over exhaustive detection in edge cases. 

 

 

 

4. Conclusion and Recommendation 

 

This study aimed to design and implement a Smart Assistance System for 

Public Transport, focusing on modern buses, to address key challenges such 

as bus arrival time prediction and seat vacancy detection. Leveraging 

advancements in technology—including GPS, the ESP32-CAM with the 

FOMO object detection algorithm, and integration with Google Maps—the 

system provides real-time monitoring and a user-friendly interface for 

passengers. 

 

The methodology involved system design and integration of multiple 

components: a passenger counting and seat availability detection module, 

GPS-based tracking, development of a smart application, and backend 

integration using technologies such as Node.js, React Native, Firebase, and 

the Google Maps API. 
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Future researchers are advised to consider the following recommendations 

based on the study's findings. First, while Edge Impulse offers convenience, it 

may not be the most reliable platform for object detection training due to 

limitations in accuracy and performance. Exploring alternative platforms or 

developing custom solutions is recommended for more robust object 

detection. Second, the angle of installation plays a critical role in detection 

performance. For optimal results, the prototype should be installed at a fixed 

downward-facing angle and securely fastened with screws to ensure stability 

during operation. This minimizes movement-induced detection errors and 

ensures consistent system performance. 

 

Although the system demonstrates accurate passenger counting, it is currently 

unable to detect seat occupancy caused by non-human objects (e.g., bags). 

This limitation arises from model optimization for human detection within the 

ESP32-CAM’s resource constraints. To address this, conservative capacity 

heuristics have been implemented (Section 3.2.1), with plans for future 

improvement through multi-class object detection integration. 
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