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Abstract 
 

Dissolved Gas Analysis (DGA) is a practical, non-intrusive test to check transformer 

health status, as it is widely used in the field. However, the traditional methods of DGA-

based diagnostics have intrinsic weaknesses. For example, the Rogers ratio method is 

limited only to gases involved in the computation. The interpretation of the IEC Ratio 

method can be unknown at some point. The Duval triangle method cannot diagnose 

healthy degradation of oil from faulty ones. All traditional methods were subject to 

expert subjective judgment. To fill these gaps, this paper introduces the two-layer 

framework using a random forest algorithm with the IEEE C57.104 – 2019TM guide 

as a watchdog (layer 1) for unhealthy oil degradation versus normal ones. The 

prediction model (layer 2) used the random forest algorithm. Using the 277 DGA 

datasets from Distribution Utilities from different parts of the Philippines, the 

framework surpassed the accuracy of traditional methods (Duval triangle method, IEC 

ratio, Doernunberg method) with an accuracy of 100%. The Duval triangle got 98.92% 

accuracy, the IEC ratio had 28.32% accuracy, and the Doernunberg method had an 

accuracy of 27.50%. Other ML algorithms, such as ANN (MLP), K-nearest neighbors, 

SVM (linear), and J48, were also used for comparison. The ANN (MLP), K-Nearest 

neighbor, and SVM (linear) got 78.6%, 85.7%, and 78.6% accuracy, respectively. The 

random forest got the highest cross-validation score (89.14% ave.) among all ML 

methods. Further evaluations were used for J48, DT, and Random Forest since all got 

100% accuracy. RF algorithm still got the highest PR-AUC (94%, 89%) and ROC-

AUC (95%, 97%) scores among the J48 and DT in the 70/30 and 80/20 data split. 

 

Keywords: dissolved gas analysis, machine learning, random forest, supervised 

                  learning, transformer health   
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1. Introduction 

 

1.1 Condition Assessment of Transformers 

 

Condition Assessment procedures (CA) are vital tools to evaluate the physical 

condition of equipment to make informed maintenance decisions and in asset 

management. Condition assessment consists of a systematic inspection, 

review, and report of the state of the equipment (de Castro-Cros et al., 2021). 

The goal of CA in the context of power transformers was to maximize the 

overall lifecycle of an aging asset while minimizing possible operational costs. 

CA procedures are subject to expert opinion. The problem with expert opinion 

is that it differs from one expert to another, and manual assessment is time-

consuming (Sholevar et al., 2022). This leads to inconsistency on the receiving 

end of the interpretation of the data. Power assets were one of the most 

complex assets to manage and protect. Power transformers are indispensable 

assets in the power system. Asset managers had two tasks: to know the 

underlying incipient fault to protect the transformers and to estimate their 

remnant life (Aminifar et al., 2022). These two tasks are significant challenges 

themselves since transformers are composed of complex systems (L. Sun et 

al., 2016). In effect, various tests and surveys were needed, and factors to 

consider, such as loading history, maintenance record, environmental 

condition, and fault history, to do condition assessment. Early and accurate 

diagnosis is critical for these machines to prevent unexpected breakdowns that 

can cause catastrophic damage. Moreover, replacing damaged transformers is 

costly and time-consuming. However, with the advancement in machine 

learning, automated and unbiased decision-making processes can significantly 

enhance the accuracy of diagnosis. 

 

1.2 Health Index 

 

One key aspect of machine health assessment is the computation of a health 

index, which quantifies the machine's overall condition based on various 

parameters and sensor readings. This index provides a standardized metric for 

comparing the health of different machines and tracking changes over time. 

The HI ranges from 0% to 100%. The lesser the transformer's HI, say <40%, 

the more likely the transformer was in good condition, and 100% indicates the 

transformer is in "poor" condition. Although the HI approach cannot reflect 

the status of any specific component of a transformer, it measures the level of 

overall long-term deterioration (Murugan and Ramasamy, 2019). Abu-

Elanien et al. (2011) coined the word “health index” (HI) as a general 

transformer health indicator using a feed-forward artificial neural network 
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(FFANN), which proved successful for all transformers. The index approach 

was based on the lab test results, on-site physical examination, and historical 

fault summary of the transformers' operation. The index approach harmonized 

the results of these tests with qualitative physical surveys to have an overall 

transformer evaluation (Aizpurua et al., 2019; Azmi et al., 2017). Machine 

learning approaches such as evidence theory, gray clustering decision, matter 

element theory, and Bayesian network normalized by the fuzzy logic 

algorithm were employed in the HI approach (Da Silva et al., 2021). Guo, H. 

and Guo, L. (2022) developed a practical HI index approach by averaging two 

HI values: (HI1 and HI2) for the condition assessment applied to 55 power 

transformers at 330 kV. This considers not only the traditional data, such as 

lab tests and fault history, but also the environmental operating conditions of 

the transformer. The factor of the age of the transformer was also taken into 

account. HI approach of ranking and weights was effective in minimizing 

maintenance costs in the field. However, in the context of the proactive HI 

approach, which was based on data and expert opinion, the computation might 

vary from one expert to another. To overcome this limitation, intelligent 

algorithms such as fuzzy logic, ANN, and SVM were developed to eliminate 

expert decisions for a more consistent index. Though it does eliminate 

subjective evaluation, it does not change the fact that the source data is still 

inconsistent in each research advancement. Some transformer test data were 

included in one study, and some were not. Moreover, other tests are costly, 

and the method is rigorous (Wong et al., 2022). As many machine learning 

(ML) algorithms and varied datasets aided the HI approach, which gave more 

power and vigor to the method, it also became more complex and inconsistent 

(Murugan and Ramasamy, 2019). In effect, irregularities in the Health Index 

approach existed. Furthermore, the index approach, as a general “health” 

indicator, could not be specific about what fault the transformer was at risk of. 

Thus, engineers and field practitioners could not implement maintenance 

procedures to mitigate the real and specific “health” issue of aging 

transformers. 

 

1.3 Dissolved Gas Analysis 

 

Dissolved Gas Analysis (DGA) monitors the dissolved gases in the 

transformer oil. The purpose of the DGA test is to evaluate the incipient faults. 

Incipient faults include electrical, thermal, partial discharge, and stray gassing  

(Faiz and Soleimani, 2017). The traditional methods of DGA interpretation 

are the Key Gas method, Rogers’ ratio method, Dornenburg ratio method, IEC 

method, Nomograph method, IEEE method, and the Duval triangle method 

(C. Sun et al., 2017). Even though these are established methods in the field 



J. P. Tan & W. M. O. Narvios / Mindanao Journal of Science and Technology Vol. 23 (Issue 2) (2025) 1-39 

4 
 

of DGA, they have inherent limitations. In the case of the Key Gas method, 

which is prone to misdiagnosis, many experts do not use this method (Anil 

and Archana, 2017). The Dornenburg ratio method may have undefined 

results when the gases are outside the threshold limits of gas. Roger's ratio 

method uses only three gas ratios (CH4/H2, C2H2/C2H4, and C2H4/C2H6), and 

its limitation is that it cannot diagnose other gas combinations. The IEC 

method also cannot have a diagnosis if it does not fit the listed code 

classification (Wani et al., 2021). The Duval triangle method (DTM) is a 

graphical triangular method using three gas percentages (CH4, C2H2, and 

C2H4) to indicate six faults. One of the setbacks of DTM is that it does not 

identify the normal state of the transformer. 

 

1.4 Dissolved Gas Analysis (DGA) Condition Assessment 

 

Aside from the HI approach, other studies also used a popular and reliable 

condition assessment for transformers. The test was called the Dissolved Gas 

Analysis (DGA). This test was used to monitor the dissolved gases in the 

transformer oil. DGA has been recognized for over 50 years for improving 

reliability and lowering transformer asset maintenance costs. DGA test 

differed from other routine tests as it could be done more than once a year or 

daily, depending on the necessity. Oil radicals such as hydrogen (H2), methane 

(CH4), ethane (C2H6), ethylene (C2H4), acetylene (C2H2), carbon monoxide 

(CO), carbon dioxide (CO2), oxygen (O2) and Nitrogen (N2) in the DGA test 

were used to evaluate the incipient faults in the transformer. Graphically 

presented in Figure 1 is the fault gas generation chart by the United States 

Department of the Interior Bureau of Reclamation (Liu and Bao, 2022). 

Incipient faults include electrical, thermal, partial discharge, and stray gassing 

(Faiz and Soleimani, 2017). This was based on the fact that the presence of 

gas radicals correlates with the presence of mechanical, electrical, and thermal 

faults in the transformer. Unlike the HI approach, there was no need to include 

other oil and component tests. Therefore, consistency of data was achieved. 

Consequently, it is a more practical approach than the index. The DGA data 

was more accessible on the premise that DGA is a common test among electric 

utilities. Furthermore, DGA was fault-specific, and engineers could do prompt 

mitigations to that fault diagnosis. However, DGA is not a pure science and 

can have errors in the oil sampling and logistics (ASTM D3613), especially in 

remote areas. Nevertheless, it is logical to say, based on the literature, that it 

is still a well-known method for CA in transformers. The DGA-based 

transformer health approach has been proven effective for decades in the 

power engineering field as it became part of the IEC 60599 and IEEE C57.104 

standard. The established traditional methods of DGA interpretation were the 
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Key Gas Method, Rogers Ratio Method, Dornenburg Ratio Method, IEC 

Method, Nomograph Method, IEEE Method, and the Duval Triangle Method. 

These methods had inherent limitations. In the case of the Key Gas Method, 

which was prone to misdiagnosis, many experts did not recommend the 

method (Anil and Archana, 2017). The Dornenburg Ratio method may have 

undefined results in some cases. The Rogers Ratio method uses only three gas 

ratios (CH4/H2, C2H2/C2H4, and C2H4/C2H6), and its limitation is that it cannot 

diagnose other gas combinations. IEC Method also had the limitation to have 

no diagnosis if it doesn’t fit the listed code classification (Wani et al., 2021). 

The IEEE Method used the Total Dissolved Concentration Gas (TDCG) 

formula and R (an increase of TDCG value in millimeters/day) to evaluate the 

condition of the transformer. The latter method could not be used without a 

series of TDCG datasets. The Duval Triangle Method (DTM) was a graphical 

triangular method using three gas percentages (CH4, C2H2, and C2H4) to 

indicate six faults. The graph of the DTM is shown in Figure 2. One of the 

setbacks of DTM was that it could not identify the normal state of oil 

degradation of the transformer. A nomograph used a series of logarithmic 

scales of individual hydrocarbon gases based on a certain model to diagnose 

faults based on gas ratios. 

 

 

Figure 1. DGA Fault Gas Generation Chart (Temple and Duncan, 1989) 
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Figure 2. The Duval triangle method graph with fault codes (IEEE, 2019)  

 

1.5 Machine Learning in Dissolved Gas Analysis Approach 

 

As machine learning methods were employed in the HI approach to improve 

its performance, DGA interpretation was no exception. The machine learning 

methods aided in overcoming the limitations of traditional methods of DGA 

evaluation and improved their performance. For example, the Fuzzy logic 

model, pattern recognition, and Extension Theory aided the limitations of the 

IEC Method by overcoming uncertainties in the method. The extended version 

of the Duval Triangle Method (DTM) using Fuzzy Logic provided multiple 

fault differentiation that the conventional counterpart cannot do (Wani et al., 

2019). Though Fuzzy logic is a good method for improving conventional 

DGA methods, its parameters should be tuned correctly to avoid discrepancies 

in the output. The capabilities of Artificial Neural Networks (ANN) in solving 

uncertainties, ANN extended the limitations of conventional methods. ANN 

algorithm fused with ratio methods improved performance compared to their 

original versions. But amidst the computing power of ANN models, they were 

constrained by many factors, like training time and network structure 

(computational cost). They were also solely dependent on the quality of data. 

Therefore, compromising data quality using ANN leads to an incorrect 

diagnosis. Aside from ANN and Fuzzy logic, other intelligent methods such 

as Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector 

Machine Technique (SVM) were also employed. Malik and Mishra (2016) 

proposed Gene Expression Programming (GEP) using three ratios of the IEC 

method as inputs. Same to ANN and Fuzzy, the three methods (ANFIS, SVM, 

and GEP) have limitations. They were limited by adequate data samples 

(ANFIS), kernel function identification (SVM), and fitness function selection 

(GEP) in practical settings. Grey Clustering Analysis (GCA) and Deep Belief 



J. P. Tan & W. M. O. Narvios / Mindanao Journal of Science and Technology Vol. 23 (Issue 2) (2025) 1-39 

 

7 
 

Network were also used for diagnosis. Ibrahim et al. (2018) also developed 

the DGA Lab software to compare traditional methods with their AI-enhanced 

equivalents, helping save time when assessing AI performance methods. 

Correlative analysis of these AI methods showed there was no best method 

among them and should be considered complementary to one another (Faiz 

and Soleimani, 2018). Since DGA Interpretation was a complicated task, 

many studies employed hybrid intelligent algorithms such as using fuzzy 

logic, SVM, Wavelet Networks (WN), Artificial Neural Network (ANN) 

models coupled with evolutionary programming (EP), Particle Swarm 

Optimization (PSO), and Genetic Algorithm (GA) (Senoussaoui et al., 2018). 

Comparing hybrid and non-hybrid intelligent classifiers, the hybrid versions 

gave a better diagnosis. The setback of these systems was the complexity of 

parameter tuning, which limited their practical application. Some studies used 

the combination of one or more traditional methods aided by ML methods 

(Ibrahim et al., 2018; Li et al., 2018; Wani et al., 2019). However, these 

techniques did not add to the knowledge about the fault information. 

 

1.6 Random Forest (RF) Algorithm in Dissolved Gas Analysis Method 

 

The random forest (RF) algorithm was an ensemble machine learning 

algorithm proposed by Breiman in 2001. This was an improvement of his 

boosting ensemble method in 1994. Ensemble means it was a combination of 

different decision models (known as trees) to perform as a whole. It was on 

the premise that weak model learners are joined to be strong learners. The 

Random Forest classifier used bagging or bootstrap aggregating (getting 

subsets of training samples through replacement) to form an ensemble of 

classification trees. In effect, the same sample could be selected several times, 

while others might not be selected at all (Belgiu and Drăguţ, 2016). The final 

classification decision was taken by averaging (using the arithmetic mean) the 

class assignment probabilities calculated by all produced trees. A new 

unlabeled data input was thus evaluated against all decision trees created in 

the ensemble, and each tree votes for class membership. The membership class 

with the maximum votes would be the one that is finally selected. RF 

algorithms were better ML methods than decision tree classifiers. RF was 

robust and insensitive to overfitting. Though RF was sensitive to data 

sampling and a little bit slower in computation, it was nevertheless a reliable 

and highly accurate ML classifier. The RF algorithm is usually exploited in 

remote data sensing tasks where it performs best, as in hyperspectral data 

classification and land cover (LC) classification of Enhanced Thematic 

Mapper (ETM+) or Multispectral Scanner (MSS) and Digital Elevation Model 

(DEM) data (Zhao et al., 2023). RF algorithm was also applied to statistical 
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tasks such as quantile estimation, causal inference, and survival analysis for 

coronary artery disease, and it proved to be very competitive (Wager and 

Athey, 2018). Many algorithms for DGA interpretation were employed using 

a total of 4580 DGA samples and the IEC TC 10 database, and proved that 

ensemble classifiers such as Random Forest are better with DGA fault 

prediction (Rao et al., 2021). Ekojono et al. (2022) investigated algorithms 

such as decision tree, support vector machine, random forest (RF), neural 

network, Naïve Bayes, and AdaBoost that could best aid the Duval Triangle 

Method for DGA interpretation. The RF Classifier performed best among the 

mentioned algorithms based on classification accuracy, the area under the 

curve, F1, Precision, and Recall. Kumar and Haque (2022) used an RF 

classifier for a modified Duval pentagon method using the density-based 

clustering (DBSCAN) approach, which proved to have a high classification 

accuracy. Dai et al. (2017) used kernel principal component analysis KPCA 

and a random forest RF Classifier to diagnose faults of traction transformers 

using the DGA dataset, achieving 100% accuracy. Jamshed et al. (2021) used 

the RF Classifier with the ten gas ratio combinations of hydrogen, ethane, 

methane, acetylene, and ethylene (DGA gases) for fault diagnosis. The paper 

achieved 89% accuracy and was effective in detecting Partial Discharge (PD)  

 

This study developed a framework based on DGA data using the Random 

Forest Algorithm and the IEEE C57.104 – 2019TM Guide to improve the 

diagnostic method of DGA interpretation. The proposed framework utilized 

the primary data collected from the Distribution Utilities of Cebu and other 

contractors. The framework will eliminate the subjectivity of expert opinion. 

The framework’s performance was compared to established traditional and 

machine learning methods. 

 

 

 

2. Methodology 

 

The study encompasses the evaluation of transformer health through 

Dissolved Gas Analysis solely and does not include other parameters for 

transformer health evaluation such as loading history, operational conditions, 

and other routine tests dataset. Only five input gases (as features) were 

included in the study namely methane (CH4,) ethane (C2H6), acetylene (C2H2), 

ethylene (C2H4) and hydrogen (H2) were the features of the dataset. These five 

gases were common features of DGA traditional methods interpretation. The 

fault types (the labels of the dataset) were based on the IEC 60599 standard, 
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which are partial discharge (PD), low energy discharge (D1), high energy 

discharge (D2), and thermal faults 1, 2, and 3 (T1, T2, T3). The study only 

uses 227 DGA datasets with an uneven number of fault output data. Moreover, 

only mineral oil-filled transformers will be studied in this paper. Lastly, stray 

gassing in the transformer oil is not considered in the DGA interpretation. The 

voltage level for the primary DGA data was not uniform, as it is taken from 

different parts of Cebu. 

 

2.1 The Two Layer DGA diagnostic framework 

 

As shown in Figure 3, the proposed two-layer DGA diagnostic framework will 

consist of an IEEE C57.104 Guide and a random forest (RF) algorithm 

prediction model. The former will serve as the “fault sensor or watchdog” to 

detect normal from the faulty transformer. The latter will diagnose the type of 

incipient fault present in the transformer. DGA gases in ppm values with 

labeled faults, specifically hydrogen, methane, ethane, ethylene, and 

acetylene, will be fed to the “fault sensor” layer. The threshold of fault gases, 

the IEEE thresholds, will be the barometer of whether the said DGA dataset 

represents a faulty transformer. If the dataset is within the limits of the IEEE 

Guide, the DGA dataset will no longer proceed to layer 2. However, if it 

exceeds the limit, it will proceed to the second layer, the “classification layer.” 

The prediction model of the said layer will process the faulty dataset. Then the 

prediction model will classify the specific fault based on its learned insight 

using a random forest algorithm.    

 

As shown in Figure 3, the developed two-layer DGA diagnostic framework 

consisted of an IEEE C57.104 Guide and a random forest (RF) algorithm 

prediction model. The former served as the “fault sensor or watchdog” to 

detect “high risk” from “low risk” transformers. If there were a minimum of 

two key gases that surpass the limit set by the IEEE Guide, it would be 

considered a “high risk” transformer dataset. All “low risk” datasets would be 

for recordkeeping and subject to another DGA testing after six months. All 

“high risk” datasets would proceed to the second layer, which was the machine 

learning (random forest algorithm) layer. The second layer would diagnose 

the type of incipient fault present in the transformer using the learned insights 

from the input dataset itself. 
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Figure 3. The Developed Two-Layer Framework 

 

The model has two layers. The first layer filters the low-risk (not yet faulted) 

from the high- risk (possibly faulted). The simplified threshold for DGA levels 

using IEEE C59.104 is shown in Table 2. This is a simplified version than 

using the values of Table 1. The second layer, classifies the high-risk fault 

type. The second layer was classifying six specific fault types based on IEC 

60599 standard (as shown in Figure 3). CO and CO2 are not included in the 

DGA data since the CO/CO2 ratio can only be significant if the ratio reached 

10 (Banovic et al., 2015). From the overall dataset only 20% reached the said 

ratio so this study did not include the CO/CO2 ratio as feature of the research 

dataset. 
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2.2 Sampling Rate 

 

The development of the prediction model followed the standard machine 

learning protocol. As shown in Figure 4, the labeled DGA dataset samples 

were tested using the remaining 20% for validation (10%) and testing (10%).  

 

Due to non-disclosure agreements (NDAs) with industries that own the 

dataset, the parties were legally bound to protect the confidentiality of the 

original data. This confidentiality was essential for maintaining trust and 

compliance with legal agreements, thereby safeguarding proprietary 

information, trade secrets, and potentially sensitive or confidential data points 

within the dataset. 

 

If the accuracy of the random forest prediction model was low, the paper used 

the Random Search CV from sklearn library as the hyperparameter 

optimization method for this study. Random Search CV used the hard and fast 

range of hyperparameter settings sampled from mere chance distributions. As 

shown in Figure 4, compared to grid search CV, random search CV yields 

better results because of its high dimensionality in selecting hyperparameters. 

Overfitting was checked during the implementation using the stratified cross 

validation library in google colaboratory platform. 

 

 

Figure 4. Classification Model Development and Evaluation 
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2.3 The Random Forest Algorithm Classifier 

 

The Random Forest Algorithm is an ensemble algorithm of decision trees. The 

original training dataset is being resampled randomly and turned to n number 

of bootstrapped training sets which corresponds to the n decision trees that it 

would feed upon. The n predictions or outputs of n decision trees would be 

selected through majority voting thus arriving at one outcome as shown in 

Figure 5. This classifier tends not to overfit since there is no redundancy of 

dataset features in each n decision tree.  

 

 
Figure 5. Random Forest Classifier Flow Chart (Ahmad et al., 2022) 

 

2.4 Stratified K Fold Validation 

 

While fitting and evaluating the classification model, another cross-validation 

was needed to ensure there is no overfitting during training. This study used 

the stratified K-fold validation because of the imbalanced characteristics of 

the DGA dataset. In K fold Cross-validation, the training datasets were 

grouped (“folded”) into desired parts and trained individually. After which, 

the average of accuracies in each fold would be averaged as shown in Figure 

6.  

 
 

 

 

 

 

 

 

 

 

Figure 6. Sample Visualization of K Fold CV in Python 

(The scikit-learn developers, 2025) 

Training set Training set 1 Training set 2 

Test set Decision Tree 1 Decision Tree 2 Decision Tree n 

Decision Tree n 

Prediction 

Training set n 
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The band colors of the bar at the top represent the dataset's classification types 

(3 classes) in percentage. The band colors of the bar below represent the 

dataset's features (10 features), also in percentage. 

 

2.5 Prediction Model Evaluation 

 

2.5.1 Confusion Matrix and Classification Report Metrics 

 

Standard metrics, such as accuracy and confusion matrix derivatives, would 

evaluate the prediction model. The confusion matrix is a fundamental metric 

in classification tasks. It identifies true positives (TP), true negatives (TN), 

false positives (FP), and false negatives (FN). These values compute essential 

classification report metrics such as precision, recall, F1 score, and accuracy, 

which are calculated using Equations 2, 3, 4, and 1, respectively. Precision 

(Positive Predictive Value) measures the proportion of optimistic predictions 

that are correct. High precision indicates that the rate of positive class 

predictions was usually correct. Recall (Sensitivity/True Positive Rate), on the 

other hand, measures the proportion of actual positive instances that the model 

correctly identified. High recall means fewer false negative predictions. F 

score (F1 score) computes the harmonic mean of precision and recall. It 

provides a better metric of incorrectly classified cases than accuracy: 

 

Accuracy = (TP + TN)/(TP + TN + FP + FN (1) 

 

Precision = (TP)/(TP + FP)  (2) 

 

Recall = (TP)/(TP + FN)   (3) 

 

             F1-score = 2*(Precision*Recall)/(Recall + Precision)                (4) 

 

where, TP is the true positive predictions; TN = true negative predictions; FP 

= false positive predictions; TP = true positive prediction. 

 

2.5.2 Area under the Precision Recall Curve (AUC-PR) 

 

The Precision-Recall (PR) curve is a graphical representation used for binary 

classifications, but can also be used for multiclass classification using the One 

versus All library in the IDE. One class is treated as positive and the other 

classes as negative, thus treating them still as binary representation. The graph 

compares the precision to the recall performance of the algorithm at different 

thresholds.PR curve is useful when there is a data imbalance. Since this is a 

multiclassification task at hand, it is imperative to average the individual 

binary scores in the one vs all setup either by macro or micro averaging. 
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2.5.2.1 Micro Averaging over Macro Averaging 

 

Macro averaging is averaging equally the class prediction in the PR curve. In 

an imbalanced dataset, precision and recall for minority classes are minimal 

due to fewer positive examples. This results in lower macro averaged scores 

in those classes, giving a biased overall view of the model’s performance. The 

micro average calculates the metrics by aggregating the true positives, false 

positives, and false negatives across all classes before calculating the AUC PR 

score. Since the official dataset is quite imbalanced, it is beneficial for the 

study. The micro-averaging setup treats all predictions across all classes 

equally. This helps to accurately evaluate the algorithm based on individuality 

rather than the majority classes. 

 

2.5.3 ROC Curve (Receiver Operating Characteristics Curve) 

 

ROC Curve is also an established graphical method, like the PR Curve, but 

focuses on trade-offs between sensitivity (true positive rate) and specificity 

(false positive rate). It aids in understanding the model’s ability to correctly 

identify positive cases while avoiding false alarms across all possible 

thresholds. 

 

2.5.3.1 Macro Averaging over Micro Averaging of ROC Curve 

 

Micro averaging aggregates the positives and negatives across all classes 

before computing the ROC Curve, which biases the curve to the majority 

classes. Macro averaging gives us more insight than micro averaging in this 

case. It prevents the majority class from dominating the overall metric; thus, 

minority classes were also given importance in the calculation. Therefore, this 

study used macro averaging in using the ROC Curve. The closer the AUC 

ROC value to 1, the better the model discriminates between positive and 

negative classes.  

 

Figure 7. Sample ROC Curve and Precision Recall Curve (MedCalc Software, n.d.)  
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A model with an ROC curve closer to the top left corner is better able to 

differentiate between the positive and negative classes. Consequently, in a PR 

Curve, a model with a curve closer to the top right corner is a better model. 

 

2.6 Traditional DGA Methods for Comparison 

 

The Doernenburg Method, Duval Triangle, Rogers Ratio, and IEC Ratio were 

the conventional methods compared against the developed method. These 

methods were used for comparison with the proposed method as they were 

part of the IEEE C59.104 and IEC 60599, which govern the DGA 

interpretation of the DGA data of oil-filled transformers. 

 

2.7 Machine Learning Methods for Comparison 

 

Decision tree algorithm, J48 decision tree algorithm, SVM, artificial neural 

nets (ANN), and K nearest neighbor algorithm (KNN) were compared against 

the developed method. These algorithms represent different approaches to 

machine learning, offering a broad spectrum of techniques to compare. 

Decision trees provide a clear, interpretable model that mimics human 

decision-making. ANN models complex relationships through layers of 

interconnected nodes. SVM finds the optimal hyperplane that separates data 

into classes. The J48 algorithm is often used for its simplicity and efficiency. 

KNN is a non-parametric method that classifies data based on the closest 

training examples. These algorithms have different strengths and weaknesses, 

making them ideal for comparison. Decision trees and J48 were easy to 

understand and interpret, but can overfit complex datasets. ANN is good for 

capturing nonlinear relationships but requires substantial computational 

resources and tuning. SVM is effective in high-dimensional spaces but can be 

computationally intensive. Lastly, KNN is simple and intuitive, but can be 

slow with large datasets and sensitive to the k value and distance metrics. 

These algorithms are well-established in the literature, with extensive studies 

on their performance characteristics. This makes them reliable benchmarks for 

new algorithms or improvements. 

 

2.8 Hyperparameter Tuning using RandomSearchCV 

 

The accuracy of the classification model (random forest) after execution could 

be improved using hyperparameter tuning techniques. These popular 

techniques were gridsearchCV and randomsearchCV. Both were useful for 

tuning; however, randomsearchCV was used because of its advantages 

compared to gridsearchCV. RandomsearchCV takes less time to find the 
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“best” parameters as it does not follow a uniform search and can handle high 

dimensionality, as shown in Figure 8. 

 

 

Figure 8. RamdomSearchCV Dimensionality (Bergstra et al., 2012)  

  

Higher dimensionality means more combinations to evaluate, which can 

increase the search time exponentially. Therefore, it is important to strike a 

balance between exploring a wide range of hyperparameters and managing the 

computational cost. RandomizedSearchCV helps address this by randomly 

sampling a subset of combinations from the search space, making it more 

efficient than an exhaustive grid search. 

 

Table 1. IEEE C57.104 2019 Gas Threshold for a Normal Transformer 

 

 

O2/N2 Ratio ≤ 0.2 O2/N2 Ratio > 0.2 

Transformer Age in Years Transformer Age in Years 

Unknown 1-9 10-30 > 30 Unknown 1-9 10-30 >30 

G
as

 

Hydrogen (H2) 80 75 100 40 40 

Methane (CH4) 90 45 90 110 20 20 

Ethane (C2H6) 90 30 90 150 15 15 

Ethylene (C2H4) 50 20 50 90 50 25 60 

Acetylene (C2H2) 1 1 2 2 

Carbon monoxide 

(CO) 
900 900 500 500 

Carbon dioxide (CO2) 9000 5000 10000 5000 3500 
5500 

 

 
Table 2. Simplified IEEE C57.104 20 19 Gas Threshold for a Normal Transformer 

 

H2 CH4 C2H2 C2H4 C2H6 

100 110 2 90 150 
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2.9 Datasets Characteristics 

 

The total number of labeled datasets for the framework is 277. Table 3 shows 

the breakdown of the fault types. The faults partial discharge (PD), low 

energy discharge (D1), and high energy discharge (D2) accounted for only 

2.16%, 2.88%, and 1.8%, respectively, of the total data. The fault types 

mentioned above are difficult for dissolved gas analysis to detect because they 

are instantaneous faults. This confirms the literature about dissolved gas 

analysis, which is not effective in detecting these partial discharges, 

flashovers, and other instantaneous faults. Thermal faults 1, 2, and 3 

constituted 7.22%, 19.49%, and 66.79% of the total dataset, respectively. 

 

Table 3. Dataset Distribution 

 

Fault Type No. of dataset Percentage 

Partial Discharge (PD) 5 1.81 

Low Energy Discharge (D1) 8 2.89 

High Energy Discharge (D2) 5 1.81 

Thermal Fault 1 (T1) 20 7.22 

Thermal Fault 2 (T2) 54 19.49 

Thermal Fault 3 (T3) 185 66.79 

Total 277 100 

 

 

 

Figure 9. Dataset Distribution Chart 
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The dataset was mostly comprised of thermal faults, as shown in Figure 9. 

Thermal faults were more common in DGA interpretations because they 

developed gradually due to everyday stresses like overloading or cooling 

failures, leading to consistent gas production that is easily detected. In contrast, 

electrical faults like arcing and partial discharge were often sudden and 

catastrophic, so they are less frequently captured in DGA datasets. 

 

 

 

Figure 10. DGA dataset Statistics 

 

Hydrogen (H2) has a higher mean in Figure 10 because it is produced under 

diverse conditions, from normal operations to various fault types. Its standard 

deviation is high (4440.62) due to the significant variability in the amounts 

produced across different transformers, depending on the nature and severity of 

their conditions. The mean concentration of methane (CH4) is lower than that of 

hydrogen because it is associated with specific types of faults, not the broad 

range of conditions that generate hydrogen.  The standard deviation of methane 

is moderate, reflecting variations in the severity of partial discharges or thermal 

faults across different transformers. However, it is lower than hydrogen due to 

its more specific fault associations. The mean value of ethane (C2H6) is often 

lower than both hydrogen and methane, as significant thermal faults are less 

common across the entire population of transformers. The standard deviation 

for ethane is lower than that of hydrogen because its production is tied to more 

specific conditions. However, it can increase if the dataset includes transformers 

with varying degrees of thermal stress. The mean concentration of ethylene 

(C2H4) can be higher in datasets with older transformers or those operating under 

high stress. However, it is generally lower than hydrogen due to the more 

specific and severe conditions required for its production, as evident in 

Ethylene’s standard deviation (Figure 10), which is usually higher than ethane 

but lower than hydrogen. This reflects that severe overheating is less common, 

but when it does occur, it can lead to significant variability in ethylene levels. 
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The mean value of acetylene (C2H2) is typically low because high-energy 

electrical discharges are relatively rare in transformers. When present, it 

indicates serious faults. Acetylene usually has a high standard deviation because 

its concentration can spike dramatically during severe faults, leading to 

significant variability in the dataset. 

 

Figure 11 shows the pair plot or scatter plot matrix. This is the relationship 

in terms of distribution between two features of the DGA dataset. This is one 

of the visualizations of the dataset in Python. Vertical and horizontal dot 

patterns mean that the pair has no correlation, as in the case of C2H6 versus 

H2 and also C2H6 versus C2H2. While patterns with a positive slope mean a 

positive correlation between C2H4 and C2H6. This scatterplot provides a 

unique overview of the dataset correlation and distribution. 

 

 

 

 

Figure 11. Pairplot of the DGA dataset 
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Figure 12 shows another visualization of the official dataset. This is a feature 

analysis. In each feature (gas), the distribution of gas values in frequency 

values is displayed. The first row shows the distribution of gases in terms of 

numerical value and their corresponding frequency. In the case of H2, the 

values are more concentrated on the left side, which means the dataset values 

are not different from each other, similar to CH4. While C2H6 and C2H4, their 

datapoints have some variations in terms of frequency. The second row is a 

pairplot matrix. The third row is the inverse representation of row one, as 

these graphs interchange the frequency and the gas values in the graph. 

Feature analysis provides deeper insights into the dataset and illustrates how 

these characteristics influence the framework into which the datasets are 

integrated. 

 

While Figure 11 and 12 are graphical relationships and feature 

visualizations, Figure 13 shows the numerical correlation values in terms of 

two gases concerned. The negative correlation values indicate that the two 

gases have inverse relationships in the distribution as in the case of H2-C2H4 

pair. The positive correlation values show directly proportional relationship 

in the distribution of values. Strong association are in the case of H2-CH4 

(0.76), followed by C2H6-CH4 (0.45). Weak association were in the case of 

CH4-C2H4, C2H6-C2H4.These means that they are least likely proportional in 

terms of distribution. 
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Figure 13. Correlation matrix of the DGA dataset 

 

2.10 Stratified Sampling to handle Dataset Imbalance 

 

Since there is an imbalance in the dataset of the study, this study used 

stratified sampling to address the issue. In stratified sampling, the selection 

of samples within each stratum is typically done randomly. This ensures that 

each unit in the dataset has an equal chance of being selected for the sample 

within its respective stratum. Therefore, while the overall process of 

stratified sampling involves deliberate grouping of the population into strata 

based on certain characteristics, the selection of samples within each stratum 

is random, which helps to reduce bias and ensure the representativeness of 

the sample. 

 

2.11 Feature Engineering 

 

2.11.1 Standardization of dataset 

 

Standardization is one of the methods of feature scaling in a dataset. Dataset 

should be scaled in comparable limits so the machine learning algorithms 

would not tend to weigh greater values than lower ones. This method 

calculates the mean and standard deviation (SD) of the data and subtract the 

mean value from each entry and divide by the standard deviation (𝜎) as 

calculated in Equation 1. This method normalizes the data with a mean of 

zero and SD of 1:  

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑋𝑖−𝑋𝑚𝑒𝑎𝑛

𝜎
   (5)                                 
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Where, Xscaled = scaled feature, Xi = feature sample, Xmean = mean of 

the features, 𝜎  = standard deviation. 

 

2.11.2 Binarization of Labels 

 

The dataset labels were categorical values such as “PD” (partial discharge), 

DI (low energy discharge), D2 (high energy discharge) and three thermal 

faults T1, T2, T3. This nature of labels does not coincide to the numerical 

values of the feature gases which is in ppm. Though it is still possible to 

have categorical non-numerical labels in the fitting of ML methods, it is 

common practice and to use the LabelBinarizer library in scikit learn for all 

operations and evaluations that the dataset will undergo. This study is an 

example of this set up. This study used binarization in the labels (as 

calculated in Equation 2) for ease of navigation in the operations of datasets 

in the Google Colab platform. Below is the mathematical expression for 

binarization. 

 

A set of possible classes 𝐶 = 𝐶1, 𝐶2, … 𝐶𝑛 and a label 𝒚𝒋. The binarized 

vector 𝑦′ for the label 𝑦𝑗 would be expressed as: 

 

𝑦𝑖
′ = δ (𝑦𝑗, 𝐶𝑖)    (6) 

 

where 𝑦𝑖
′  is the value at the ith position in the binarized vector. δ (𝑦𝑗, 𝐶𝑖) is 

the Kronecker delta function. 

 

2.12 Data Analysis 

 

Figure 14 shows the data analysis flow of this study, which used the 

developmental method of data analysis. Figure 15 shows the detailed process 

flow of the study.  

 

2.12.1 Gathering of Data 

 

This section outlines and explains the processes involved in gathering data 

during and after designing and implementing the developed framework. Four 

phases were identified to facilitate data collection: the preliminary, design, 

implementation, and evaluation phases. 

 

2.12.2 Preliminary Phase 

 

In this phase communications: transmittal letters were sent to the respective 

Distribution Utilities (DUs) and electrical contractors requesting to entrust 

their DGA laboratory results of power transformers. This phase intended to 
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collect sufficient primary DGA datasets to be run through the algorithm in the 

next phase of this study. This phase prepared the necessary documents to get 

the primary data through the Notarized Non-Disclosure Agreement (NDA) 

with the power companies. 

 

2.12.3 Design Phase 

 

The design of the developed framework and the appropriate algorithm for the 

task were finalized. This phase completed the framework and determined 

which fault gases would be included in the final preprocessed data. 

 

2.12.4 Implementation Phase 

 

This study executed the algorithm (random forest algorithm) in a machine 

learning platform using the preprocessed DGA dataset. 

 

2.12.5 Evaluation Phase 

 

This study evaluated the performance of the trained classification model using 

a random forest algorithm using accuracy metrics, precision, recall, and F1 

score. This phase also checked the overfitting tendency using stratified K-fold 

validation. Optimization took place also in this phase if necessary. 

 

 

 

Figure 14. Data Analysis Flow  

Design Phase 

• Design the developed 

framework for DGA 

based fault 

interpretation 

• Identify the DGA gases 

involved in the 

framework  

Preliminary Phase 

• Transmittal Letter for 

DGA Dataset Request 

• NDA between 

Company and 

Researcher 

Evaluation Phase 

• Accuracy 

• F1 score 

• K Fold Validation 

• Precision Curve Scores 

• Recall Curve Scores 

Implementation Phase 

• Dataset Preprocessing 

• Dataset Splitting 

• Dataset feeding to the 

ML methods and Trad 

Methods 
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Figure 15. Dataset Architecture and Process Flow 

 

 

 

3. Results and Discussion 

 

3.1 Performance of DGA Traditional Methods 

 

As shown in Figure 16, Duval Triangle method got the highest accuracy 

among other traditional methods in the table. This confirms the literature that 

Duval was the most efficient trad method in comparison with the methods in 

the list. The developed RF model surpassed the Duval Triangle Method 

accuracy by 1.08%. The developed model is 72.50% higher than the 

Doernenburg Method. In the case of the Rogers Ratio method and IEC Ratio 

Method, the model is 67.99% and 71.68% higher, respectively. 
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Figure 16. Performance Summary of Traditional Methods 

 

3.2 Performance of Machine Learning Methods 

 

In Figure 17 the J48, decision tree and random forest got the superior accuracy 

(100%) when compared to several well-established machine learning 

algorithms used in this paper, including k-Nearest Neighbors (KNN) (85.7%), 

Support Vector Machine (SVM) Linear (78.6%) and Artificial Neural 

Network (MLP classifier) (78.60%). Among the top three ML performers the 

random forest got the highest validation accuracy of 85.7%. This means that 

RF got the best generalization capabilities: learning underlying patterns that 

generalize to new data. 

 

 

Figure 17. Accuracy Summary of Machine Learning DGA Methods 
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Table 4. Cross Validation Scores of ML Methods 

 
ML Methods 5 fold Cross Validation Scores (80/10/10 Split) 

Average CV 

Scores 
Accuracy 

KNN 0.888889 0.840909 0.795455 0.772727 0.886364 0.836869 
Val:82.1% 

Test: 85.7% 

SVM (linear) 0.755556 0.727273 0.750000 0.727273 0.727273 0.737475 
Val: 71% 

Test:78.6% 

ANN (MLP 

Classifier) 
0.755556 0.795455 0.750000 0.750000 0.727272 0.755657 

Val:28.6% 

Test:78.6% 

DT Algorithm 0.911111 0.772727 0.863636 0.909091 0.954545 0.882222 
Val:71.4% 

Test: 100% 

J48 DT 

Algorithm 
0.866667 0.886364 0.863636 0.818182 0.886364 0.864242 

Val: 46.4% 

Test: 100% 

(Developed 

Method) 

Random Forest 

0.888889 0.863636 0.931818 0.863636 0.909009 0.891414 
Val: 85.7% 

Test: 100% 

 

Classification accuracy is not guaranteed to be the sole parameter for 

evaluating ML methods. Cross-validation is an essential tool to validate that 

there is no overfitting during the training process of identifying transformer 

faults.  In a 5-fold cross-validation, k-fold cross-validation is used in this 

study. In this case, 5-fold CV was used. As shown in Table 4, the average 

accuracy across all 5 tests was calculated to get an average accuracy which in 

this case of Random Forest is 89.14%. This score is the highest among other 

ML algorithms used in comparison in this study. Good scores across different 

folds indicate that the model is stable and robust. 

 

Table 5. Evaluations and Visualizations of ML Methods 

 

ML Confusion matrix Classification Report 
Precision Recall Curve 

(AUC) 

KNN 

 

 

 

SVM 

(linear) 

 
 

 



J. P. Tan & W. M. O. Narvios / Mindanao Journal of Science and Technology Vol. 23 (Issue 2) (2025) 1-39 

28 
 

Table continued.  

ANN 

MLP 

Classifie

r) 

 

 

 

DT 

Algorith

m 

  
 

J48 

Algorith

m 

 

 

 

Random 

Forest 

 

 

 

 

Table 6.  F1 score and PR AUC scores of ML methods 

 

ML Method Weighted F1 score PR Curve (AUC) 

KNN 83.00% 42.5% 

SVM(linear) 69% 82.2% 

ANN (MLP Classifier) 69.00% 65.7% 

DT Algorithm 100% 61.8% 

J48 DT Algorithm 100% 61.2% 

(Developed Method) Random 

Forest 

100% 80.67% 
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Figure 18.  F1 score and PR Curve scores of ML Methods (Graphical) 

 

In a diagnostic ML such as the framework of this study, precision recall and 

F1 score were crucial metrics due to their ability to provide insights into the 

model’s performance. Moreover these metrics were useful for an imbalanced 

dataset. The F1 score of the ML methods and the average scores of the PR 

AUC Curve are calculated. DT, J48 and RF still got the highest F1 score. Table 

5 showed the visuals of the confusion matrix, classification reports and PR 

Curves of the ML methods. Random Forest also got the high PR_AUC score 

which is 80.67% as shown in Table 6.  SVM got the highest PR AUC Score 

(82.2%) but fall short on the F1 score (69%). Figure 18 showed the graphical 

visualization of the F1 scores and PR Curves (AUC).  

3.3 Further Evaluation of top three ML Methods (J48, DT, Random forest) 

 

Since J48, DT, and Random Forest were almost the same in their accuracy, 

cross-validation, and F1 score performances. The behavior of these three ML 

methods was further analyzed using two different data splits and reevaluated 

their accuracies and PR-AUC Curve, as shown in Table 7.  Figures 19 and 20 

show the bar graph version of Table 7 to better emphasize the value difference 

of scores. Table 8 shows the actual ROC, PR, and classification reports of the 

80/20 and 70/30 splits of the top three ML methods. This time ROC_AUC 

Curve was added for evaluation. Through these further evaluations, it can be 

concluded which ML performs better given the dataset changes in training and 

testing.   
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Table 7. Precision Recall (AUC) Curve Scores and ROC (AUC) Curve Scores 

 

ML Method Data Split 

PR AUC Curve 

Score 

(micro average) 

ROC AUC  

Curve Score 

(macro average) 

Decision Tree 

Classifier 

70% train 30% test 84.00% 91.00% 

original split 92.00% 94.00% 

80% train 20% test 87.00% 96.00% 

J48 DT Classifier 

70% train 30% test 88.00% 90.00% 

original split 92% 83% 

80% train 20% test 87.00% 95.00% 

Random Forest 

Algorithm (Developed 

Method) 

70% train 30% test 94% 95% 

original split 96% 94% 

80% train 20% test 89% 97% 

 

 
 

Figure 19. ROC (AUC) Curve for different datasplit 

 

 
 

 

Figure 20. PR (AUC) Curve scores (diff. split) 
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During the execution of the three ML methods in two different data splits, all 

got a classification accuracy of 100%. This is expected since the dataset is 

small and easier for an ML to learn and make correct predictions. The random 

forest got the overall highest scores among DT and J48 both for ROC-AUC 

and PR AUC Curve scores for three data splits as shown in Table 9. The 

Random forest got an average of 95.33% (ROC_AUC score) and 93.00% (PR 

-AUC Curve) across multiple splits. This ML is followed by DT algorithm 

93.66(ROC_AUC score) and 87.67(PR-AUC Score). J48 got an average of 

89.33% (ROC_AUC score) and 89.00% (PR AUC Curve). 

 

A high ROC curve (AUC) score means that the model has excellent capacity 

in discriminating between positive and negative classes especially in 

imbalanced datasets. On the other hand high PR Curve (AUC) score signifies 

that the model is very good in predicting positives accurately which is 

essential in diagnostic settings similar to the proposed framework of the study.  

 

 
 
 

Figure 21. Feature Importance Analysis Graph 

 

Feature importance analysis visualization shows the importance of each 

feature in making predictions. It helps identify which features are most 

influential in the model’s decision-making process. In Figure 21, It showed 

that the methane gas (CH4) (feature 2) gas has the highest influence feature 

among all gases comprised followed by C2H6 (feature 3:ethane), H2(feature1: 

hydrogen), C2H4 (feature 4:ethylene) and C2H2 (feature 5: acetylene) 

respectively. 
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Table continued.  

Table 8. Evaluation Visuals based on 80/20 Split 

 
Evaluation for 80/20 SPLIT 

ML Classification Report ROC Curve Precision Recall Curve 

(AUC) 

J48   

 

DT    

 

Random 

Forest 

Algorith

m 

  

 

 
Table 9. Evaluation Visuals based on 70/30 Split 

 

Evaluation Result for 70/30 SPLIT 

ML Classification Report ROC Curve (AUC) Precision Recall Curve 

(AUC) 

J48   
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Table continued.  
DT   

  

Random 

Forest 

Algorith

m 

 

 
 

 

3.4 Some Limitations of the Proposed Framework 

 

Though the framework had the accuracy of 100% it does not correlate to a 

perfect model. The dataset was limited and imbalance in nature which made 

the developed method more advantageous in its implementation.  

 

Interpretation of DGA thresholds that the IEEE C59.104 set is more likely an 

art than science since interpretation of gas ratios can be ambiguous, sometimes 

leading to false positives or negatives regarding the health of transformers. 

The standard may not detect minor faults early enough, as it is more effective 

for identifying severe issues. Fixed threshold values may not account for 

variations in different transformer designs and operating conditions. Lastly, 

requires expert knowledge for accurate interpretation, which can limit its 

usability in the field. 

 

Random forest algorithm, though powerful, has several limitations. Its 

complexity and multiple decision trees make it difficult to interpret. Training 

requires significant computational resources, making it time-consuming and 

memory-intensive. Overfitting remains a risk if hyperparameters are not 

properly tuned. Feature importance estimates can be biased, especially with 

varying feature scales or categorical levels. The algorithm struggles with 

imbalanced data unless special techniques are applied as in the case of the 

dataset of the study. While somewhat robust to noise, performance can still 

degrade with noisy data. Scaling to very large datasets is challenging due to 

high computational demands. Lastly, though the absence of expert opinion 

was the feature of this framework, the important rule of good engineering 



J. P. Tan & W. M. O. Narvios / Mindanao Journal of Science and Technology Vol. 23 (Issue 2) (2025) 1-39 

34 
 

judgment was still an indispensable factor in the fault diagnosis of 

transformers. 

 

3.5 Challenges in using the Framework in Real World Setting 

 

Most industries may not have easy access to DGA equipment or expertise 

therefore the proposed framework cannot be fully utilized. Secondly, there is 

a lack of machine learning background skills in most of power industry 

technical teams. The integration concerns of ML frameworks in the existing 

maintenance workflows seen to be a challenge also. Lastly, the developed 

model raise ethical concerns related to data privacy, bias, fairness, and 

accountability. 

 

 

 

4. Conclusion and Recommendation 

 

Based on the results of the study, Random Forest proved to be the most 

powerful and robust ML method in the study in comparison to the other ML 

used. It surpassed as well the traditional methods such as the Doernenburg 

method (27.50% accu.), Rogers Ratio (32.01% accu.), and IEC Ratio method 

(28.32% accu.). Moreover, it performed very well with its ML counterparts. 

These results confirmed the literature about the good performance of random 

forest algorithms in DGA-based fault classification tasks (Belgiu and Drăguţ, 

2016; Wager and Athey, 2018).There was also no overfitting during the 

execution of the algorithm because of the good scores during cross-validation. 

This RF’s CV score is the highest among the compared ML methods in the 

study. The RF performed better than the J48 algorithm and Decision tree 

Algorithm in terms of AUC curve scores (ROC Curve and PR Curve). This 

confirmed the robustness and versatility of the random forest classifier in the 

proposed two-layer framework together with the IEEE C59-104 Standard in 

diagnosing incipient faults of transformers. 

 

In light of the results and the findings of the study, these were the made 

recommendations. It was recommended to use a greater number of primary 

DGA datasets to get a more conclusive output for the prediction model. It was 

also better to include stray gassing factors that may affect DGA diagnosis. 

There is also a concern in terms of balancing the dataset representation of fault 

types as it is not addressed in this paper. It is also other qualitative methods 

and tests results of transformer parts to have a holistic approach in the context 

of transformer health monitoring. 
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