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Abstract 
 

Soil bearing capacity is critical for the success of infrastructure projects and 

foundational design. This study utilizes Geographic Information System (GIS) software 

to generate soil bearing capacity maps for Butuan City, Agusan Del Norte, Philippines, 

based on Standard Penetration Test (SPT) borehole logs from various sectors. The 

study addresses the challenge of limited geotechnical data in urban areas by providing 

a reliable method for mapping soil bearing capacity using sparse data. Thematic maps 

were produced using interpolation techniques: Inverse Distance Weighted (IDW), 

Empirical Kriging, and Spline. Results indicated soil bearing capacity values ranging 

from 58.09 kPa to 87.40 kPa at 1.5 m and 165.53 kPa to 238.31 kPa at 3.0 m depth. 

IDW interpolation emerged as the most accurate method, confirmed by high Pearson’s 

coefficient values and lower root mean square error (RMSE), mean absolute error 

(MAE), and Relative Mean Error (RME) metrics. The integration of GIS and IDW 

interpolation fills a significant knowledge gap, enabling the creation of detailed and 

dependable soil maps. These maps are crucial for geotechnical and civil engineers to 

perform preliminary assessments and make immediate decisions in urban planning.  

Regular updates are recommended as new Standard Penetration Test (SPT) data 

becomes available to ensure map accuracy and relevance. 
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1. Introduction 

 

The geotechnical properties of soil play a vital role in the success of 

infrastructure and are considered prerequisites for a good foundation design. 

The primary sources of geotechnical information are the boreholes and wells. 

Boreholes are vertical holes drilled in the ground to obtain soil and rock 

samples in order to determine stratigraphy, groundwater conditions, and soil 

properties. Geotechnical information is useful for evaluating the effects of 

projects on the environment and natural resources. It may also help in 

constructing an advanced treatment against geotechnical risks in the case of 

building settlements in the future. On the other hand, without proper 

geotechnical investigation, it is impossible to design an appropriate foundation 

for the project. This may lead to costly, over-designed foundations, project 

delays, and even serious failures and destruction. 

 

Today, there is great demand for accurate soil information over large areas 

from environmental modelers, land use planners (both urban and rural), and 

more traditional agricultural users of soil resource inventories. Soil properties 

or behavior directly relevant to their application (Ruiz et al., 2018). 

Geographic Information System (GIS) is a computer-based information 

system that has been used in many geotechnical applications, and it is capable 

of capturing, storing, analyzing, and displaying geographically referenced 

information. According to Azaronak (2015), GIS allows a geotechnical 

engineer to input field data displayed in CAD, spreadsheets, photos, or maps, 

and export it to a visual model to bring all relevant and available data together 

into a single, less complex database. By presenting all relevant data in an easy-

to-view medium, geotechnical engineers can make better-quality decisions 

more efficiently. The Environmental Systems Research Institute [ESRI] 

(2012) stated the benefits of GIS, which generally fall into five basic 

categories: cost savings and increased efficiency, better decision making, 

improved communication, better record keeping and managing 

geographically. Various studies have demonstrated the application of GIS 

software to produce maps related to the geotechnical properties of soil. These 

include the study of the case study conducted by Pando et al. (2022), which 

concluded that GIS-based zonation maps offer a better overview of subsurface 

geology, bedrock elevations, and geotechnical properties of the various soil 

types. Another study by Ikara et al. (2022) conducted a geotechnical mapping 

using GIS at Abubakar Tafawa Balewa University (A.T.B.U) Gubi Campus 

in Nigeria. They further disclosed that the existing data stored in this software 

could be easily updated to reflect new changes/modifications to the initial 
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conditions. The thematic maps provide valuable information about the soil 

properties, which is essential during planning and preliminary design work.  

Furthermore, Nkwunonwo and Okeke (2013) stated the benefits associated 

with the use of soil mapping technology; however, its proper application and 

implementation in many places remain unresolved. The gap between using 

existing hardcopy soil maps from various locations and providing suitable soil 

data for a range of human activities has increased. In the Philippines, studies 

on geotechnical mapping were published. These include the study of Caingles 

and Lorenzo (2022) on GIS-based mapping of geotechnical properties of 

residual soil in Kibawe, Bukidnon; Dungca et al. (2017) conducted a soil 

bearing capacity reference using GIS where a total of 486 borehole logs data 

were collected all over Metro Manila; Landingin et al. (2024) conducted a soil 

liquefaction hazard mapping for Daguan City in Pangasinan City based on 

regional geology, local geotechnical data, and cyclic stress ratio data and 

among others.  

 

Thematic maps generated from the GIS may vary depending on the 

interpolation techniques/methods used. Various studies applied the inverse 

distance weighted spatial interpolation method in mapping the geotechnical 

properties, such as Tuncay et al. (2015), Li et al. (2018), Khatri and Suman 

(2019), Liu et al. (2021), and others. Some researchers used kriging 

interpolation techniques in their studies, including Awan et al. (2022) and 

Pham et al. (2019). Igaz et al. (2021) and Robinson and Metternicht (2006) 

used the spline method in generating soil property maps. 

 

Butuan City is a highly urbanized city located in the northern part of 

Mindanao. The city serves as the capital of the Caraga Region and is the seat 

of regional administrative and higher-level social services, as well as urban 

amenities. With the vast economic progress the city is undergoing, low-rise to 

medium- and high-rise buildings are expected to be constructed in the area. 

Thus, a geotechnical study requires engineers to understand how soil interacts 

with the foundation (Dungca et al., 2017). Engineers must be aware of how 

soil affects foundations while designing them. However, because they are 

underground, engineers are unable to specifically design without performing 

any studies describing how the underground soil interacts. Engineers rely on 

prior investigations by their peers near the project site to provide an 

approximation of the value of the soil bearing capacity for the aforementioned 

since soil exploration is a highly expensive test. This study attempts to develop 

a solution to meet the urgent needs of engineers relative to expensive and time-
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consuming soil investigation by providing various maps of the geotechnical 

properties of the soil.  

 

 

 

2. Methodology 

 

The chronological process of this study is outlined in Figure 1. First, borehole 

logs were gathered from previous soil exploration data obtained from the 

Department of Public Works and Highways (DPWH) Caraga Region, City 

Architects Office, and Practicing Structural Engineers. A total of 24 borehole 

logs were collected, as shown in Figure 2 and its corresponding location is 

presented in Table 1. Second, the collected data were organized into 

spreadsheets for better visualization, analysis, and further geotagging 

processes. Third, the sorted data were used as input parameters in the ArcGIS 

10.4.1 version software performing interpolation to create geospatial 

representations of the data. Fourth, all the data and geospatial outputs were 

compiled to summarize the soil's data. Fifth, the accuracy and reliability of the 

interpreted data were verified against the selected validation points. Lastly, 

the consolidated information was analyzed to derive meaningful insights 

about the soil condition. 

 

 

Figure 1. Process flow of the study 
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Figure 2. Location map of Butuan City 

 

In this study, three interpolation methods were used to generate bearing 

capacity maps namely: Inverse Distance Weighting (IDW), Kriging Method, 

and Spline Function Method. A statistical technique was used to evaluate the 

accuracy of the generated maps. The IDW method is a commonly used 

interpolation technique in ArcGIS. It is used to predict values at unsampled 

locations based on known values at nearby sampling locations. The IDW 

method uses a weighted average of the values of the surrounding sampled 

points, with the weights being inversely proportional to the distance from the 

unsampled location. This means that the points closer to the unsampled 

location will have a greater influence on the predicted value than points further 

away. Kriging is a geostatistical interpolation method that is used to predict 

values at unsampled locations based on known values at sampled locations. It 

is similar to the Inverse Distance Weighted (IDW) method but uses a more 

sophisticated statistical model to calculate the weights for the surrounding 

points. Kriging accounts for the spatial autocorrelation in the data, which 

means that it considers the fact that nearby points are more likely to have 

similar values than points that are further away. In Spline function (SF) 

interpolation, a method in approximation theory for an unsampled location is 

based on the values of known points. It creates a smooth surface that passes 

through the input points, which is often used in environmental science, 

hydrology, and other fields where continuous surfaces are needed (ESRI, 

2012). 

 

 

 

 

 



V. K. Caingles & R. S. Flaviano / Mindanao Journal of Science and Technology Vol. 23 (Issue 1) (2025) 276-297 

 

281 

 

Table 1. Location of the boreholes 

 

Point Description 
No. of 

Borehole 
Northing Easting 

1 Big Daddy Hotel 1 778214.69 989173.77 

2 Camp Rafael 1 775429.45 989844.29 

3 DSWD - Caraga 1 785333.00 992298.94 

4 LMX Convention 1 773987.72 989428.82 

5 ACLC College 1 777450.45 989610.97 

6 Rose Lands Realty 1 774012.09 989420.13 

7 Rose Lands Realty 1 778496.60 989687.87 

8 LMX Convention (Ext) 1 773987.72 989428.82 

9 TCA 1 779488.10 989904.74 

10 CSU 1 785523.24 991304.90 

11 Brgy Imadejas - Tower 1 987773.05 781771.39 

12 Brgy Mahay - Tower 1 989434.86 778090.42 

13 Brgy Los Angeles - Tower 1 997547.09 786903.60 

14 Brgy Libertad - Tower 1 989313.98 776695.30 

15 Brgy Limaha - Tower 1 990822.15 778716.46 

16 Brgy Bonbon - Tower 1 987751.11 775693.47 

17 Brgy Pagatpatan - Tower 1 994203.02 777306.25 

18 Brgy Sintos - Tower 1 988730.05 777898.62 

19 Brgy Port Poyohon - Tower 1 991526.47 779330.77 

20 Brgy Libertad - Tower 1 990029.41 776402.12 

21 Brgy R.Calo - Tower 1 992034.40 779022.47 

22 Brgy Dumalagan - Tower 1 988543.89 771658.49 

23 Brgy Tiniwisan - Tower 1 993514.36 783658.84 

24 Brgy Masao - Tower 1 995458.22 773331.58 

 

The Pearson Correlation Coefficient (R) was used to measure the linear 

correlation to assess both the strength and direction of the linear relationship 

between two variables (Taylor and Harris, 2023). Table 2 shows the key 

concepts in Pearson’s correlation coefficient. 
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Table 2. Pearson’s correlation coefficient 

 

Concept Explanation 

Range Values range from -1 to 1 

 1: Perfect Positive Linear Relationship 

 0: No linear relationship 

 -1: Perfect Negative Linear Relationship 

Strength of Correlation Describes how closely the data points fit in a line 

 0.1 to 0.3 or (-0.1 to -0.3); Weak Correlation 

 0.3 to 0.5 or (-0.3 to -0.5): Moderate Correlation 

 0.5 to 1 or (-0.5 to -1): Strong Correlation 

 

The evaluation of interpolation methods for soil property estimation involves 

various statistical measures, including the Pearson coefficient, RMSE (Root 

Mean Square Error), MAE (Mean Absolute Error), and MRE (Mean Relative 

Error). RMSE provides an indication of the average magnitude of the 

prediction errors, with lower values indicating more accurate predictions, 

while MAE represents the average absolute error, providing a straightforward 

measure of prediction accuracy (Karunasingha, 2022).  MRE measures the 

average relative error between predicted and observed values, expressed as a 

proportion of the observed values (Jorgensen et al., 2022). These metrics help 

in understanding the relative magnitude of the errors in relation to the actual 

data. The RMSE, MAE, and MRE were calculated using Equations 1-3, 

respectively: 

RMSE =√
1

𝑛
∑ (𝑦𝑜 − 𝑦𝑝)2𝑛

𝑖=1        (1) 

MAE = 
1

𝑛
∑ |𝑦𝑜 − 𝑦𝑝|𝑛

𝑖=1       (2) 

MRE = 
1

𝑛
∑

𝑦𝑜−𝑦𝑝

𝑦𝑜

𝑛
𝑖=1       (3) 

where 𝑦𝑜 are the observed values, 𝑦𝑝 are the predicted values, and n is 

the number of observations.  

 

2.1 Consolidation of the created Geotechnical Properties of Soil Maps 

 

Statistical properties of the sample data were examined. The required 

information is incorporated into three known interpolation methods. The 

generated geotechnical maps were consolidated to form soil bearing capacity 

maps at depths of 1.5 m, 3.0 m, 4.5 m, and 6.0 m. 
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2.2 Validation of the results 

 

Data from previous soil explorations conducted by the Department of Public 

Works and Highways (DPWH) and the City Building and Maintenance 

Division (CBMD) were gathered and utilized to validate the geotechnical 

values generated from the thematic maps. These maps depicted essential soil 

properties, including unit weight, plasticity index, angle of internal friction, 

and cohesion, at various depths. To ensure reliable comparisons, ten (10) 

representative sampling points were strategically selected across the study 

area, taking into account variations in terrain and anticipated soil behavior. 

 

The collected historical geotechnical data included a range of soil properties, 

with a particular focus on parameters such as plasticity index, which reflects 

soil consistency; angle of internal friction, indicative of shear strength; and 

cohesion, representing the adhesive force between soil particles. These 

properties were systematically analyzed to establish their spatial distribution 

and trends. Subsequently, a correlation analysis was performed to assess the 

consistency and reliability of the geotechnical values derived from the 

thematic maps against those obtained from the DPWH and CBMD exploration 

records. This process involved statistical comparison and evaluation of the 

relationships between the two data sets, aiming to identify any significant 

discrepancies or patterns. The correlation analysis not only validated the 

thematic maps but also provided insights into the accuracy and applicability 

of historical exploration data within the context of the current study. 

 

 

 

3. Results and Discussion 

 

3.1 Bearing Capacity Values 

 

The soil bearing capacity analysis reveals a clear increase with depth, 

highlighting the relationship between soil strength and the depth at which it is 

located. At 1.5 m, the bearing capacity ranges from 46.01-61.91 kPa in the 

lower values to 189.2-205 kPa in the higher range. At a depth of 3 m, the 

capacity increases to between 142.1-173.7 kPa (lower range) and 426.5-458 

kPa (higher range). At 4.5 m, the values rise further to between 212.2-276.8 

kPa (lower) and 793.5-858 kPa (higher). Finally, at 6 m, the soil bearing 

capacity ranges from 232-378.2 kPa in the lower range to 1549-1694 kPa in 

the higher range. This progressive increase in soil strength plays a critical role 
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in determining the appropriate foundation depth for various structures. 

Shallow foundations are more appropriate for lighter structures when the 

bearing capacity at shallow depths is relatively low, while deeper foundations, 

such as piles or caissons, are necessary for heavy structures due to the higher 

bearing capacity at greater depths. Understanding the soil bearing capacity at 

different depths is also essential for mitigating risks like differential 

settlement, which can occur when foundations are placed in areas with low 

bearing capacity at shallow depths. Moreover, this data aids in the selection of 

the most suitable foundation types and materials, ensuring a safe and efficient 

design. By conducting site-specific investigations, engineers can avoid both 

over-design and under-design, ensuring that the foundation supports the 

structure adequately while optimizing construction costs and enhancing long-

term durability. The analysis of the map for soil bearing capacity revealed 

distinct ranges across various depths, reflecting the progressive increase in 

bearing capacity with depth. At a depth of 1.5 m, the soil bearing capacity 

ranged from 46.01 kPa to 61.91 kPa in the lower values and from 189.2 kPa 

to 205 kPa in the higher range. At 3 m depth, the bearing capacity increased, 

ranging from 142.1 kPa to 173.7 kPa in the lower range and from 426.5 kPa 

to 458 kPa in the higher range. At 4.5 m depth, the values ranged from 212.2 

kPa to 276.8 kPa in the lower range and from 793.5 kPa to 858 kPa in the 

higher range. Lastly, at 6 m depth, the bearing capacity further increased, 

ranging from 232 kPa to 378.2 kPa in the lower range and from 1549 kPa to 

1694 kPa in the higher range. 

 

3.2 Generated Geotechnical Maps 

 
The generation of soil bearing capacity (SBC) maps at depths of 1.5 m, 3 m, 

4.5 m, and 6 m was conducted using three interpolation methods in ArcGIS: 

Inverse Distance Weighting (IDW), Kriging, and Spline. IDW assigned 

greater weight to nearer data points, providing localized accuracy in 

representing SBC variations. Kriging incorporated spatial autocorrelation, 

offering statistically robust predictions by accounting for the relationship 

between data points. Spline generated smooth and continuous surfaces, 

ensuring gradual transitions between values for a more visually intuitive 

representation. These methods facilitated a comprehensive spatial analysis of 

SBC, enabling a deeper understanding of subsurface conditions critical for 

engineering applications and design. Figures 3-14 show the generated 

geotechnical maps. 
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Figure 3. Soil bearing capacity map using IDW interpolation at 1.5 m depth 

 

 

 

Figure 4. Soil bearing capacity map using IDW interpolation at 3.0 m depth 
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Figure 5. Soil bearing capacity map using IDW interpolation at 4.5 m depth 

 

 

 
Figure 6. Soil bearing capacity map using IDW interpolation at 6.0 m depth 
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Figure 7. Soil bearing capacity map using kriging interpolation at 1.5 m depth 

 

 

 
Figure 8. Soil bearing capacity map using kriging interpolation at 3.0 m depth 
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Figure 9. Soil bearing capacity map using Kriging Interpolation at 4.5 m depth 

 

 

 
Figure 10. Soil bearing capacity map using kriging interpolation at 6.0 m depth 
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Figure 11. Soil bearing capacity map using Spline Interpolation at 1.5 m depth 

 

 

 

Figure 12. Soil bearing capacity map using Spline Interpolation at 3.0 m depth 
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Figure 13. Soil bearing capacity map using Spline Interpolation at 4.5 m depth 

 

 

 

Figure 14. Soil bearing capacity map using Spline Interpolation at 6.0 m depth 
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3.3 Validation of values 

 

Based on the interpolation performance metrics provided in the table, IDW 

(Inverse Distance Weighting) generally emerges as the most effective method 

across various depths. At 1.5 m depth, although Spline exhibits the lowest 

RMSE (1.91) and MAE (0.60), indicating high precision, IDW shows the 

highest R² (0.7032), suggesting a better overall fit of the predicted values. For 

3.0 m depth, IDW again performs best with the highest R² (0.6675) and the 

lowest RMSE (364.94), despite its relatively high MAE. At 4.5 m depth, IDW 

continues to outperform the other methods, offering the lowest RMSE 

(755.24) and MAE (-238.83), which underscores its reliability in minimizing 

prediction errors. Finally, at 6.0m depth, IDW maintains its superior 

performance with the lowest RMSE (989.56) and MAE (-312.93), even 

though its R² is the lowest (0.2978). In contrast, Kriging and Spline methods 

demonstrate varying levels of efficiency, with Spline excelling at shallow 

depths due to its minimal error values. However, IDW's consistent 

performance across all depths, particularly in terms of minimizing RMSE and 

MAE, makes it the most suitable interpolation method for this dataset. The 

results confirm the study conducted by Li et al. (2018) that IDW provides 

accurate mapping results. On the other hand, in the study of Karwariya et al., 

among the IDW, Ordinary kriging, and spline, the IDW with the power of one 

was the best choice with low skewness while the kriging gave better results 

where the coefficient of skewness larger than one. Table 3 shows the 

comparison of the efficiencies of the interpolation methods, and Figures 15-

17 display the regression charts. 
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Table 3. Comparison of the efficiencies and errors of the interpolation methods 

 

Interpolation 

Method 

Efficiency 

(𝑅2) 
RMSE MAE MRE 

1.5 m Depth     

IDW 0.7032 21.17 6.69 -0.03 

Kriging 0.5571 7.72 -2.44 -0.17 

Spline 0.4915 1.91 0.60 -0.12 

3.0 m Depth     

IDW 0.6675 364.94 -115.40 -1.68 

Kriging 0.4334 440.09 -139.17 -1.98 

Spline 0.4334 412.92 -130.58 -1.88 

4.5 m Depth     

IDW 0.3940 755.24 -238.83 -2.40 

Kriging 0.5375 900.38 -284.73 -2.81 

Spline 0.2881 1077.35 -340.69 -3.14 

6.0 m Depth     

IDW 0.2978 989.56 -312.93 -3.24 

Kriging 0.4354 1073.67 -339.53 -3.63 

Spline 0.4845 1094.99 -346.27 28.65 

 

 

 

Figure 15. Regression chart using IDW method for 1.5 m, 3 m, 4.5 m, and 6 m depth 
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Figure 16. Regression chart using kriging method for 1.5 m, 3 m, 4.5 m, and 6 m 

depth 

 

 

Figure 17. Regression chart using spline method for 1.5 m, 3 m, 4.5 m, and 6 m depth 
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The analysis of the three interpolation methods: IDW, Kriging, and Spline, 

revealed distinct patterns in predictive performance based on their respective 

𝑅2 values. For the Inverse Distance Weighting (IDW) method 𝑅2values range 

from 0.0126 to 0.4945, with the highest value observed at 1.5 m (𝑅2=0.4945). 

This indicates that IDW performs best at shorter distances, as the predictive 

accuracy significantly declines with increasing distance, such as at 6 m (𝑅2 =

0.0126). In contrast, the Kriging method demonstrates a more consistent 

performance, with 𝑅2values ranging from 0.1878 to 0.3104. Its highest 

predictive accuracy is observed at 6m (𝑅2=0.3104), suggesting that Kriging is 

more robust at longer distances compared to IDW. Meanwhile, the Spline 

method shows the weakest predictive performance among the three, with 

𝑅2 values ranging from 0.0083 to 0.2579. The highest 𝑅2value is observed at 

4.5 m (𝑅2=0.2579), but overall, Spline struggles to establish a strong 

relationship between measured and predictive values. While IDW proves to 

be the most effective for localized predictions at short distances, Kriging 

offers more stable results across varying distances. However, the Spline 

method appears less suitable for this dataset due to its generally low 𝑅2 values, 

making it the least reliable of the three interpolation methods. Hence, the IDW 

method is more accurate for closer distances, while the Kriging and Spline 

method provides more reliable predictions over a broader range of distances, 

especially as the distance increases. The choice between these methods 

depends on the specific application requirements, particularly the distance 

over which predictions are made. 

 

Table 4 illustrates the variation in soil bearing capacity at different depths. 

Figure 18 shows the relationship between soil bearing capacity at different 

depths, with the x-axis representing depth in meters and the y-axis showing 

bearing capacity in kilopascals (kPa). Two distinct lines are plotted: the blue 

line represents the average of the lower range of bearing capacity values, while 

the red line shows the average of the higher range. The lower range starts at 

approximately 54 kPa at a depth of 1.5 m and increases steadily to about 305 

kPa at 6 m. Similarly, the higher range begins at around 197 kPa at 1.5 m and 

rises significantly to approximately 1621 kPa at 6 m. This progressive increase 

in bearing capacity with depth indicates that deeper soil layers can support 

heavier loads. For engineering design, this suggests that shallow foundations 

may be suitable for lighter structures at depths of 1.5 to 3 m, while deeper 

foundations like piles or caissons are necessary for heavier structures at depths 

of 4.5 to 6 m, where the soil's bearing capacity is much higher. 
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Table 4. Variation in soil bearing capacity at different depths 

 

Depth (m) Lower Range (kPa) Higher Range (kPa) 

1.5 46.01- 61.91 189.2 - 205 

3.0 142.1 – 173.7 426.5 - 458 

4.5 212.2 – 276.8 793.5 - 858 

6.0 232 – 378.2 1549 - 1694 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 18: Range of soil bearing capacity for IDW Method 

 

 

 

4. Conclusion and Recommendation 

 

Soil bearing capacity values ranged from 46.01 kPa to 61.91 kPa in the lower 

values and from 189.2 kPa to 205 kPa in the higher range for shallow 

foundations, with variations reflecting differences in soil type and strength 

parameters. Higher bearing capacities were observed in areas with 

predominantly granular soils. The calculated values align with engineering 

standards and are suitable for construction purposes in the study area. 

Moreover, among the evaluated methods—Inverse Distance Weighted (IDW), 

Empirical Kriging, and Spline Function—Inverse Distance Weighted emerged 

as the most precise interpolation technique. This method’s ability to account 

for spatial autocorrelation resulted in geotechnical maps with the lowest error 

metrics, ensuring better accuracy and reliability. Therefore, the Inverse 

Distance Weighting (IDW) method is the best-suited interpolation technique 
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for this study, as it demonstrated the highest accuracy with a strong 

correlation, low RMSE and MAE values, and minimal RME, ensuring reliable 

and precise results. Regular updates are recommended as new Standard 

Penetration Test (SPT) data becomes available to ensure map accuracy and 

relevance. 
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