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Abstract 
 

Bitter melon (Momordica charantia), a tropical and subtropical vine, has been 

extensively studied for its bioactive compounds and their potential therapeutic benefits. 

The present study evaluate the molecular docking results, drug-like characteristics, 

and pharmacokinetic properties of cucurbitanes, karounidiols, and momordicin 

derived from bitter melon. The aim was to assess their potential in treating type 2 

diabetes mellitus (T2DM) by comparing them with a well-established drug control and 

conducting an ADMET assessment. The study employed molecular docking analysis to 

evaluate the binding affinity and binding site characteristics of the identified 

compounds with the PPARG protein. Furthermore, a comprehensive ADMET 

assessment was conducted to evaluate the absorption, distribution, metabolism, 

excretion, and toxicity profiles of the compounds. The results indicates that all tested 

compounds exhibit higher affinity and a comparable binding site with the PPARG 

protein compared to pioglitazone. Moreover, the favorable ADMET profiles and 

minimal potential for acute toxicity indicate the suitability of these compounds for 

further therapeutic development. However, further research is required to confirm the 

degree of agonist properties and validate their therapeutic potential comprehensively. 
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1. Introduction 

 

A chronic metabolic condition known as diabetes mellitus is defined by 

increased blood glucose levels characterized on by abnormalities in 

metabolism caused by deteriorated insulin function (Kotwas et al., 2021). It is 

the primary cause of serious medical problems and one of the leading causes 

of death worldwide (Ismail et al., 2021). The World Health Organization 

reports that more than 415 million people globally are currently affected by 

diabetes. The International Diabetes Federation (IDF) estimates that by 2035, 

the number of people with diabetes worldwide will reach 592 million (Kotwas 

et al., 2021; Ismail et al., 2021). Critically, it has become one of the leading 

causes of death worldwide and is recognized as a significant public health 

priority (Kotwas et al., 2021; Khan et al., 2020). Accumulating evidence 

demonstrated that diabetes patients had higher rates of overweight, 

dyslipidemia, smoking, poor physical activity, and inflammation (Khan et al., 

2020; DasNandy et al., 2022). 

 

T2DM is characterized by decreased insulin sensitivity due to insulin 

resistance, impaired insulin production, and pancreatic beta-cell dysfunction, 

all leading to decreased glucose uptake by the liver, muscle, and adipose 

tissues (Olokoba et al. 2012). The development of T2DM is significantly 

driven by both genetic and environmental factors, particularly lifestyle (Bellou 

et al., 2018). Individuals with a family history of T2DM are at an especially 

high risk of developing the condition, showing a strong genetic predisposition. 

Numerous genes have been closely associated with the onset of T2DM, 

including TCF7L2, PPARG, FTO, KCNJ11, NOTCH2, WFS1, CDKAL1, 

IGF2BP2, SLC30A8, JAZF1, and HHEX (Olokoba et al., 2012). 

 

This research focused on PPARG, a type II nuclear receptor belonging to the 

nuclear hormone receptor superfamily. According to Gupta et al. (2010), it is 

mostly expressed in adipose tissue and has essential roles in metabolism, 

including glucose homeostasis, which is disrupted in cases of T2DM. Also, it 

has a crucial role in controlling adipogenesis in white adipose tissue, driving 

fibroblastic progenitors into adipocytes (Frkic et al., 2021; Cataldi et al., 2021; 

Gupta et al., 2010). Therefore, PPARG was identified as a prominent target 

for anti-diabetic treatment. On the other hand, PPARG agonists like 

Pioglitazone and Rosiglitazone are commonly used to manage hyperglycemia 

in T2DM, alongside sulfonylureas, biguanides, and α-glucosidase inhibitors. 

However, these drugs can cause side effects such as severe hypoglycemia, 

weight gain, and low target specificity, reducing their therapeutic efficacy 
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(Padhi et al., 2020). This highlights the need for new drugs with fewer adverse 

effects and better specificity.  

 

Bitter melon is known for its immune-modulating, antiviral, antibacterial, and 

anti-cancer properties (Sun et al., 2023; Çiçek, 2022; Dandawate et al., 2016). 

Traditionally, it has been used in Turkish and Indian medicine for various 

ailments, including diabetes, infections, wound healing, digestive issues, and 

inflammatory conditions (Sur and Ray, 2020; Dandawate et al., 2016). Other 

studies also demonstrated that bitter melon is widely used as a therapeutic 

remedy for diabetes-related ailments. It shows notable antidiabetic and 

hypolipidemic effects, suggesting its potential as an adjunct to conventional 

medical interventions for diabetes management and prevention of associated 

complications (Kim et al., 2020; Joseph and Jini, 2013). Although the role of 

bitter melon in diabetes management is well-documented, the exact molecular 

mechanisms by which its key compounds interact with crucial regulatory 

proteins, such as PPARG, remain unclear. Thus, this study aims to bridge the 

gap in understanding the anti-diabetic potential of bitter melon bioactive 

compounds by employing molecular docking and pharmacokinetic analysis to 

evaluate their role as PPARG agonists. By comparing these compounds with 

a well-established drug control, this study assessed their binding affinity, 

pharmacokinetic properties, and drug-like potential. This computational 

approach provides insights into the mechanism of action, supporting future 

experimental validation and drug development for diabetes treatment. 

 

 

 

2. Methodology 

 

2.1. Ligand Preparation  

 

This study employed three chemicals that were primarily identified in bitter 

melon: cucurbitanes (CID. 71306377), karounidiols (CID. 159490), and 

momordicin (CID. 57518366). Pioglitazone (CID. 4829), which acts as a 

PPARG agonist, was employed as a control. Before docking, the structure of 

the ligand was obtained from the PubChem database (Kim et al., 2025). The 

ligand's structure is stored in sdf format to facilitate its interpretation by the 

docking software. 
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2.2. Target Protein Preparation  

 

The PPARG serves as a protein target for bioactive substances and control 

drugs in this study. The PPARG protein's structure was constructed via 

SWISS-MODEL webserver (2025) (Waterhouse et al., 2024). The protein 

sequence from PPARG was initially obtained from the UniProt website under 

the protein ID P37231 prior to conducting docking with the ligands (Coudert 

et al., 2023). 

 

2.3. Molecular Docking and Visualization Process  

 

The current study involved the utilization of PyRx software (v.0.8, 2025) for 

the purpose of molecular docking (Dallakyan and Olson, 2015). The 

integration of PyRx software with Open Babel enables the optimization of 

energy for particular ligands prior to the initiation of the molecular docking 

procedure (Dallakyan and Olson, 2015). Subsequently, the molecular docking 

outcomes are visualized utilizing BIOVIA Discovery Studio Visualizer 

(v.2016, 2025), followed by the evaluation of the chemical interactions and 

implicated amino acid residues within the protein-ligand complex 

(Hidayatullah et al., 2021). 

 

2.4. Target Protein and ADMET Prediction 

 

The assessment of the chemical structure and chemical characteristics of 

bioactive compounds was conducted using the SwissADME (2025) (Daina et 

al., 2017). Concurrently, the Swiss Target Prediction website was utilized to 

forecast target proteins from a particular bioactive compound. To investigate 

the pharmacokinetic characteristics of bitter melon bioactive compounds, the 

pkCSM web server (2025) was utilized to assess the absorption, distribution, 

metabolism, excretion, and toxicity properties (Pires et al., 2015). 

 

 

3. Results and Discussion 
 

Based on predictive analysis, PPARG has an important role in regulating 

some biological processes and molecular functions related to T2DM, such as 

cellular response to insulin stimulus or glucose homeostasis, which are highly 

dysregulated in the cases of T2DM (Figure 1). Furthermore, an assessment 

was conducted on the protein targets derived from the three bioactive 

compounds present in bitter melon. It was shown that a significant proportion 

of cucurbitanes, specifically 33.3%, had a predominant affinity towards the 
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family A G protein-coupled receptor group. Regarding the karounidiols, it 

was found that 40% of its value was directed towards the nuclear receptor 

protein group, while the remaining 20% was directed towards the cytochrome 

P450 protein group. Approximately 33.3% of studies have indicated that the 

momordicinin predominantly interacts with the nuclear receptor protein 

group, whereas approximately 26.7% of studies have focused on the enzyme 

group (Figure 2). 

 

Figure 1. The predicted roles of PPARG in type 2 diabetes mellitus. PPARG 

involvement in biological processes (A); PPARG involvement in molecular 

functions related to type 2 diabetes mellitus (B) 
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Figure 2. The chemical structure, chemical properties, and predicted target protein of 

cucurbitanes, karounidiols, and momordicin 
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Figure 3. The expanded prediction of cucurbitanes target proteins and its possible target 

pathways according to KEGG (Kanehisa et al., 2017). 
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Ranjitha (2015), upon their contact with particular ligands, nuclear receptors 

undergo translocation to the nucleus, where they undergo structural 

modifications and exert regulatory control over gene transcription. Insulin-

sensitizing medications known as PPARG-agonists are employed in the 

management of hyperglycemia accompanied with insulin resistance. Thus 

far, PPARG agonists, including rosiglitazone and pioglitazone, have garnered 

significant popularity for their efficacy in managing T2DM. However, the 
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PPARG-agonists commonly elicit adverse effects such as edema, anemia, 

liver dysfunction, and heart failure (Hernandez-Quiles et al., 2021; Wang et 

al., 2017; Janani and Ranjitha, 2015). 

 

 

Figure 4. Molecular docking of PPARG protein with bitter melon bioactive compounds 

and control drug. Binding affinity of ligands against the PPARG protein (A); 

3D structure visualization of cucurbitanes, karounidiols, momordicin, and 

control drug agaisnt the PPARɣ protein (B) 
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molecular docking analysis revealed that the three active compounds from 

bitter melon exhibited higher potential binding affinity values and 

demonstrated better interaction with the target protein compared to the control 

drug (Figure 4A). Notably, the visualization results also indicate that those 

compounds have identical binding site location with the control drug (Figure 

4B). This suggests that those compounds might possess the ability to activate 

PPARG, thereby in turn eliciting an anti-diabetic reaction.  

 
Cucurbitanes    Karaunidiols    Momordicin    Piglitazol 

Cucurbitanes 

     

Karaunidiols     
 

Momordicin     

 

Pioglitazone 

Binding affinity (Kcal0mol) 

-8.6       -8.5         -8.4        -8.3        -8.2        -8.1        -8.0         -7.9        -7.8        -7.7 

A 

B 



W. E. Putra et al. / Mindanao Journal of Science and Technology Vol. 23 (Issue 1) (2025) 102-120 

110 

 

 

Figure 5. The 2D structure and interaction visualization of cucurbitanes (A), 

karounidiols (B), momordicin (C) and Pioglitazone (D) against the PPARG 

protein 
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diabetes (Han et al., 2018). Additionally, research has summarized the 

potency of Momordica charantia compounds, including karounidiols, in 

regulating glucose absorption in the gut and stimulating its uptake into 

muscles, thereby contributing to improved glucose homeostasis (Tripathy et 

al., 2018). In the same way, momordicinin has demonstrated anti-diabetic 

potential by inhibiting α-amylase activity, suggesting its role in diabetes 

management (Kulkarni et al., 2021). 
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Figure 6. The physicochemical properties of cucurbitanes, karounidiols, momordicin, 

and Pioglitazone against the PPARG protein including aromatic, H-bonds, 

interpolated charge, hydrophobicity, ionizability, and solvent accessibility 

surface (SAS) properties.  
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affinity between ligands and receptors is the presence of robust hydrogen 

bonding (Terefe and Ghosh, 2022; Uzzaman and Mahmud, 2020). 

Conversely, the phenomenon of interaction among two to three ligands at a 

shared receptor binding site is typically characterized by a competitive ligand 

binding model which is mean two ligands possess the ability to effectively 

bind to the identical receptor site (Salahudeen and Nishtala, 2017). 

 

Table 1. The absorption, distribution, metabolism, excretion, and toxicity properties 

of cucurbitanes, karounidiols, and momordicin 

 

Property Model Name 

Predicted Value 

Unit 
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Absorption Water solubility -5.668 -6.186 -6.374 log mol/L 
Caco2 

permeability 
1.258 1.176 1.159 

log Papp in 

10⁻⁶ cm/s 

Intestinal 
absorption 

96.297 93.526 94.964 % Absorbed 

Distribution VDss (human) -0.164 0.293 0.213 log L/kg 

BBB 

permeability 
0.975 -0.002 -0.142 log BB 

CNS 

permeability 
-0.785 -2.495 -2.605 log PS 

Metabolism 

 

CYP2D6 

substrate 
No No No Yes/No 

CYP3A4 
substrate 

Yes Yes Yes Yes/No 

CYP2D6 

inhibitor 
No No No Yes/No 

CYP3A4 

inhibitor 
No No No Yes/No 

Excretion 
Total Clearance 0.320 0.054 0.184 

log 
mL/min/kg 

Renal OCT2 

substrate 
No No No Yes/No 

 

Furthermore, the protein-ligand complex was visualized through molecular 

docking, yielding a two-dimensional structure that illustrates the nature of the 

interaction between the protein and the bioactive compounds. In addition, 

findings were yielded in the form of amino acid residues that engaged in 

interactions with the ligands (Figure 5). The identification of these specific 

amino acid residues plays a crucial role in determining the character of 

chemical interactions between the ligand and the protein. Additionally, the 

existence of these amino acid residues also influences the specific chemical 

interactions that take place inside the protein-ligand complex. The 
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visualization results were then confirmed with a one-to-one comparison 

between the potent compounds and the drug control, suggesting that they 

occupied the same binding cavity. Those providing us an insight that these 

compounds could have a comparable effect on the PPARG activity and its 

cascade compared to the well-known drug control. The fact that all of them 

are thought to have agonist effect, instead of antagonist, also supported by 

their binding site residues, which do not intertwine with the active binding site 

of the DNA-binding domain (Kroker and Bruning, 2015). This specific 

binding site has also been reported to interact with other PPARG-agonists 

belonging to the thiazolidinediones family, including rosiglitazone (Nolte et 

al., 1998).  

 

Structurally, PPARG consists of an activation domain, a DNA-binding 

domain, a hinge region, and a ligand-dependent ligand-binding domain. The 

later, located in the C-terminal region of the protein, play a critical role in 

protein activation as nuclear receptors, which change the protein conformation 

into an activated state, particularly in the activation domain, which is vital to 

coactivator recruitment (Gampe et al., 2000; Tontonoz and Spiegelman, 

2008). However, the key interaction that could drive this kind of 

conformational change lies in the TZD's head group, which is a 

thiazolidinedione ring, with certain residues in the LBD. Other dynamic or 

structural studies are needed to confirm if this effect also happens with 

different functional groups (Thangavel et al., 2017). 

 

The visualization results of docking provided various indicators of the 

physical and chemical properties of protein-ligand complexes. These 

indicators encompass aromatic content, hydrogen bonding, interpolated 

charge, hydrophobicity, ionizability, and structure-activity relationship 

(Figure 6). The findings indicate that a comparable trend is observed in the 

bioactive compounds derived from bitter melon compared to the drug control. 

Based on all parameters employed in this study, this finding suggests that the 

three chemicals derived from bitter melon exhibit similar physical and 

chemical characteristics in comparison to the drug control. 

 

Regarding biological systems, the wide range of functionalization of amino 

acid residues plays a pivotal role in how protein structures react to their 

environment, particularly in terms of ligand interactions. These interactions 

are achieved through precise control of side chain positioning and the 

extended backbone structure (Yan et al., 2020). To a greater extent, hydrogen 

bond plays an important role in drug discovery and development, as it has a 
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significant impact on chemical and biological processes. Hydrogen bonding 

occurs when small molecules engage with other molecules, proteins, or 

membranes. Hydrogen bonding influences important drug-like features such 

as target affinity and oral availability (Ghiandoni and Caldeweyher, 2023). 

Furthermore, non-covalent interactions, including van der Waals interactions, 

are responsible for DNA and protein activity, pharmacological action 

mechanisms, and liquid and solid water characteristics. Nonetheless, non-

covalent interactions are crucial in establishing polymorphism, 

compressibility, and solubility (Tantardini et al., 2020). 

 

In addition, a thorough examination and assessment of the pharmacokinetics 

of the potential compounds discovered in bitter melon, including several 

variables such as absorption, distribution, metabolism, excretion, and toxicity, 

is commonly referred to as ADMET (Table 1). A viable drug candidate should 

have positive ADMET properties at therapeutic levels while having sufficient 

activity against the selected biological pathway or protein. The passage of an 

oral drug across the intestinal epithelial barrier, which controls the rate and 

extent of human absorption and ultimately impacts its bioavailability, presents 

a significant challenge. Therefore, Caco-2 and intestinal absorption were 

employed to evaluate absorption characteristics. Approximately 90% of 

oxidative metabolic processes are mediated by CYP enzymes, specifically 

isoforms 1A2, 2C9, 2C19, 2D6, and 3A4. OCT2 initially secretes many 

cationic drugs, and inhibitors of this enzyme may alter the accumulation of 

drugs in the kidney, potentially leading to nephrotoxicity. Finally, 

hepatotoxicity evaluation was one of the key endpoints addressed in the 

toxicity assessment (Flores-Holguín et al., 2021; Guan et al., 2018). 

 

The SwissADME analysis reveals that the compounds this study propose have 

attractive drug-like characteristics. They all have a high intestinal absorption 

rate, indicating that they could be used orally. In terms of distribution, 

cucurbitane is projected to easily diffuse to the blood-brain barrier, whereas 

the others diffuse with reduced permeability, as evidenced by the logBB and 

logPS values (Carpenter et al., 2014; Tuz-Zohura et al., 2023). Notably, all 

had low VDss values, suggesting a minimal potential to cause renal failure 

and dehydration (Tuz-Zohura et al., 2023). Additionally, these compounds are 

predicted to have comparable cytochrome P450 metabolism patterns. All of 

them are projected to be metabolized by CYP3A4 and generally act as non-

inhibitors of P450, indicating that they will not interfere with the 

biotransformation of the molecule metabolized by the cytochrome (Srivastava 

et al., 2022). The excretion characteristics, which indicate hepatic consent and 
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renal clearance, revealed that curcubatine has the highest excretion properties, 

while the others remained favorable. The toxicity analysis reveals that every 

compound has an LD50 value greater than 2 mol/kg, indicating a decreased 

acute toxicity potential (Tuz-Zohura et al., 2023). However, karunidol is 

thought to be the sole compound that impairs liver function. This should be 

considered as additional study is undertaken to confirm these predictions. 

 

 

 

4. Conclusion and Recommendation 

 

Cucurbitanes, karounidiols, and momordicin have shown promising 

molecular docking results, drug-like qualities, and advantageous 

pharmacokinetic features. Compared to a pharmacological control, these 

compounds' potential as T2DM treatment candidates is supported by their 

better affinity and similar binding site interactions with the PPARG protein. 

These results highlight the therapeutic value of chemicals derived from bitter 

melon in regulating PPARG activity, which may aid in generating new 

antidiabetic medications. Although these findings are promising, it is essential 

to recognize a few caveats. The study mainly uses in silico approaches, which, 

while predictive, need to be validated by in vitro and in vivo tests to verify the 

drugs' safety and biological activity. More research is needed to understand 

their dynamic behavior and structural changes upon interaction with the 

PPARG protein to strengthen the evidence for their therapeutic potential. 

Furthermore, even with the encouraging ADMET evaluation showing good 

absorption, metabolism, distribution, and excretion characteristics, the 

possible toxicity of these substances, especially their impact on liver function, 

remains a serious concern. To validate their safety for therapeutic usage, 

extensive toxicological investigations are necessary, including targeted 

studies on the hepatotoxicity profile of karounidiol.  To get these molecules 

closer to clinical development, it will be essential to address these constraints 

through thorough experimental validation. 
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