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Abstract 
 

The Philippines is one of the countries that is prone to typhoons and heavy rainfall. 

Various atmospheric measures are monitored to inform its citizens regarding climate 

and weather events. One of these is the r-year return level. In this study, the researchers 

developed precipitation return level maps with uncertainty measures for selected 

provinces in Mindanao, Philippines. Using advanced statistical and computational 

techniques, results demonstrated that a Generalized Pareto Distribution-based 

Bayesian hierarchical model can effectively estimate r-year precipitation return levels 

and their associated uncertainty. The hierarchical models efficiently handled the 

uncertainties in the estimation and easily integrated key covariates in the modeling. It 

is recommended that more parameters and other covariates be considered to extend 

the complexity of the model. 

 

Keywords: Bayesian hierarchical model, daily precipitation, generalized pareto 

                  distribution, r-year return level, spatial analysis 

                   

 

1. Introduction 

 

Despite the Philippines’ well-known vulnerability to storms, Typhoon Washi 

(locally known as ‘Sendong’) caught many off-guard when it struck Mindanao 

at midnight on December 16, 2011. This devastating typhoon resulted in over 

a thousand fatalities and caused nearly a billion pesos in damages. An 

estimated 18 inches of rain fell in Cagayan de Oro alone, more than half the 

city’s average monthly total. Such extreme precipitation events underscore the 

importance of understanding their occurrence for effective disaster risk 

management. 
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A common measure of extreme weather events is the return level. The return 

level for a given return period T (e.g., 10 years) is the rainfall amount expected 

to be exceeded on average once every T year. For instance, if the 10-year 

return level for daily rainfall in a particular region is 10 inches, a daily rainfall 

event of 10 inches or more is expected to occur, on average, once every 10 

years. 

 

Regional Frequency Analysis (RFA), introduced by Dalrymple (1960), has 

been widely applied in hydrology and engineering for estimating return levels 

over several decades (Hosking and Wallis, 1997). However, RFA has notable 

limitations, including its inability to incorporate covariates into parameters 

and its restricted capacity to evaluate error propagation through its multi-step 

process (Katz et al., 2002). Bayesian hierarchical modeling (BHM) has 

emerged as a powerful alternative for analyzing spatial extremes (Cooley et 

al., 2007). This approach enables simultaneous inference of all unknown 

quantities, effectively accounting for interactions between estimation errors 

across different levels.  

 

This study applied BHM to estimate five-, three-, and five-year return levels 

for daily precipitation in Mindanao, Philippines. BHM’s predictive 

performance was validated, and localized return level estimates were obtained, 

addressing the island’s unique challenges with extreme precipitation. 

 

 

2. Methodology 

 

2.1 Extreme Value Theory (EVT) 

 

Given independent and identically distributed random variables Z1, Z2,…, and 

letting Bn = max(Z1, Z2, …, Zn) represent the maximum over a block of n values. 

Under certain regularity conditions, the distribution function of Bn converges 

to a specific three-parameter distribution, known as the Generalized Extreme 

Value distribution (Fisher and Tippet, 1928). For a sufficiently large threshold 

u, the distribution function of the excesses, Y = Z − u, conditional on Z > u, 

are described approximately by the Generalized Pareto Distribution (GPD), as 

shown in equation 1 (Pickands,1975).  

                                         P (Z>z+u | Z>u) = (1+ξ
z

σu
)

+

-
1

ξ
                                      (1) 

 

where a+= a if a ≥ 0 and a+= 0 if a < 0.   
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The scale parameter 𝜎𝑢, is greater than zero, and the shape parameter 𝜉, 

controls whether the tail is bounded (𝜉 < 0) , light (𝜉 → 0)or heavy (𝜉 > 0). 

In practice, a threshold is chosen at a level where the data above it 

approximately follows a GPD and the shape and scale parameters are 

estimated. 

 

EVT provides the link between data recorded on a smaller scale (e.g., daily, 

hourly) time frame and quantities of longer time scales such as return levels. 

Letting 𝑛𝑦 represent the number of observations taken in a year, one obtains 

the r-year return level, zr, by solving the equation P(Z > zr) = 1/rny for zr as 

shown in Equation 2.   

 

                 𝑧𝑟 = 𝑢 +
𝜎𝑢

𝜉
[(𝑟𝑛𝑦𝜍𝑢)

𝜉
− 1]    with 𝜍𝑢 = 𝑃(𝑍 > 𝑢)                              (2) 

 

2.2 Data Collection and Study Area 
 

The National Oceanic and Atmospheric Administration website obtained daily 

precipitation totals (in inches) from January 1, 2010, to December 31, 2023 

for 14 weather stations located in the different provinces of Mindanao. For an 

area like Mindanao with diverse geographies but with sparse weather stations, 

elevation and geographical coordinates will likely influence on the 

climatological behavior of extreme precipitation. Thus, the corresponding 

latitude, longitude, and elevation were obtained as covariates in the modeling. 

Figure 1 shows the Map of the study area (in yellow shade), which includes 

provinces from Region IX (Zamboanga Peninsula), Region X (Northern 

Mindanao), and Region XI (Davao Region). 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
Figure 1. The Map of the study area 
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2.3 Threshold Selection 

 

Threshold selection is crucial in fitting a BHM based on the GPD. This study 

utilized Wadsworth test diagnostics, which returns the white noise process and 

calculates the null Distribution. This selects the lowest threshold value at 

which the hypothesis of the change point is not rejected for all higher 

thresholds (Wadsworth, 2012). 

 

2.4 Data Declustering 

 

After determining the optimal threshold value, precipitation values for each 

province were declustered. Only precipitation values exceeding the optimal 

threshold were used to fit the GPD-based BHM. 
 

2.5 Maximum Likelihood Estimation of the Scale Parameter 

 

An algorithm from Cooley (2007) was applied to conduct maximum 

likelihood estimation of the scale parameter for the declustered data. This 

estimates the scale parameter for each location since one of the model’s 

assumptions is that the scale parameter of each location considered is known. 
 

2.6 The Bayesian Hierarchical Model 
 

In this study, four BHMs were formulated to estimate return levels. The 

formulation was discussed in three layers. It was based on the method 

proposed by Cooley (2007) and O’Sullivan (2019). 
 

2.6.1 The Data Layer 

 

Suppose we have s locations denoted by 𝑥1, 𝑥2, … , 𝑥𝑠. Let 𝑍𝑘(𝑥𝑖)  be the k-th 

recorded precipitation value at location 𝑥𝑖, modeled as a GPD as shown in 

Equation 3. 

 

            zk
(xi

)~GPD(μ(xi
),σ(xi

), ξ(xi
))                                                   (3) 

 

where 𝜇(𝑥𝑖), 𝜎(𝑥𝑖), and 𝜉(𝑥𝑖) are the optimal threshold (also known as 

location parameter), scale, and shape parameters of each location, 

respectively. The probability that the precipitation value would exceed the 

threshold was assumed to follow a binomial distribution. 
 

2.6.2 The Process Layer 

 

In this layer, it was assumed that the parameters of the GPD vary smoothly in 

the latitude-longitude space. It describes the relationship between the latent 



A. A. Lague et al. / Mindanao Journal of Science and Technology / Vol. 22 (S1) (2024) 277-291 

 

281 

 

spatial process, the mean logarithmic transformation of the scale parameters 

denoted by 𝜙(𝑥), as a linear relationship of its covariates. In this study, two 

possible covariates were considered. For the first covariate, the elevation of 

each location was utilized as a predictor of 𝜙(𝑥) as depicted in equation 4. 

                                            

                                    E(ϕ(x)) = μ
ϕ
(x) =  αϕ,1eϕ(x) + αϕ,0                              (4)  

 

where 𝑒𝜙(𝑥) is the elevation (in meters).  Moreover, latitude and longitude 

were also considered covariates of the Bayesian model. It can be modeled 

using a multiple linear relationship concerning the logarithmic transformation 

of the scale parameters, as depicted in Equation 5. 

  

                          E(ϕ(x)) = μ
ϕ
(x) = αϕ,1latϕ(x) + αϕ,2long

ϕ(x)
 + αϕ,0                 (5) 

 

Aside from that, the logarithmic transformation of the scale parameters is 

assumed to be from a normal distribution with a uniform precision value 

denoted by 𝜎𝜙. For the shape parameter, two possible formulations were 

created. First, it was modeled as a single value with a uniform prior. Another 

formulation is that the shape parameter values still have a uniform prior; 

however, it varies in each location.  

 

2.6.3 The Prior Layer 

 

The prior distributions of the parameters indicated at 2.6.2. The prior 

distribution of regression parameters is assumed normal. The priors of the 

precision value of the regression coefficients and shape parameters are 

assumed to be uniform distributions. 

 

2.7 Return Level Estimation 

 

Determining the posterior of the marginal distributions of each location was 

done using Equation 2. The associated return levels were visualized using 

geographical choropleth maps, which represent the return level distribution 

plots for selected provinces in Mindanao. In this study, the only focus was the 

posterior means and the bounds of the 95% high-density index. The high-

density index was defined as the set of all values that fall between the 2.5th 

and 97.5th percentile, representing the range within which the true parameter 

value is most likely to lie. 
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2.8 Markov Chain Monte Carlo (MCMC) Approximation Algorithm  

 

The MCMC approximation was set into four chains in 20,000 iterates with 

1,000 burn-in steps. A thinning value of 1 was used to reduce the 

autocorrelation of the lags. In addition, stationarity tests were utilized to 

determine whether the chains converged to their stationary distribution. This 

was done using MCMC diagnostics, specifically the Effective Sample Size 

(ESS), R - hat, and the Monte Carlo Squared Error (MCSE). This can be done 

using the NUTS sampler. 

 

2.9 Model Comparison 

 

The performance of the models was compared using the Deviance Information 

Criterion (DIC). The DIC is a generalization of the Akaike Information 

Criterion (AIC). It estimates the adequate number of parameters by calculating 

the difference between the posterior mean of the deviance and the deviance at 

the posterior means of the parameters. A lower DIC value indicates a better 

model fit, balancing model complexity and goodness of fit. 

 

2.10 Model Validation 

 

Model validation was conducted by comparing the actual and estimated return 

level values of the best-fit model, specifically for two, three, and five-year 

return levels. 

 

 

 

3. Results and Discussion 

 

3.1 The threshold and Declustered Data 

Based on the Wadsworth diagnostic test (Wadsworth, 2014), the optimal 

threshold value was determined to be 8.4 inches. Figure 2 shows the time 

series plot of the data after retaining the precipitation data that exceeded the 

threshold. Initially, each province had 5,113 observations. Nearly half of the 

observations from Zamboanga del Norte, Zamboanga del Sur, and Davao de 

Oro exceeded the threshold. These provinces had higher probabilities of 

experiencing precipitation values that exceed the threshold, compared with 

other provinces. When data values at a particular location are more likely to 

exceed the threshold, the return level increases, indicating a higher frequency 

of extreme events (O’Sullivan et al., 2019). 
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3.2 Estimates of the Variability of Extreme Values 

 

Figure 3 shows the maximum likelihood estimates of the scale parameter of 

the GPD for the selected provinces. Davao de Oro had the highest value, while 

Zamboanga City had the lowest among all provinces. This implied that the 

extreme values in Davao de Oro were highly dispersed whereas Zamboanga 

City exhibited low variability. This suggested that Davao de Oro experienced 

a wide range of extreme precipitation events while the Zamboanga City region 

experienced more consistent extreme precipitation. As Gilleland and Katz 

(2016) pointed out, increasing the scale parameter leads to more conservative 

risk estimates, predicting higher potential losses and extreme events.  
 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

Figure 3 The maximum likelihood estimates of the scale parameter of 
the GPD 

 

3.3 Posterior Distributions 

 

Tables 1 to 3 summarize the posterior means of the models’ parameters and 

their corresponding credible intervals. The tables that the coefficient 

distributions for Models 1 and 2 were similar in terms of their posterior means 

and 95% high-density intervals. The corresponding posterior intercept mean 

was 2.08, and the posterior slope was 0.00015. Credible intervals were around 

[1.8, 2.3] and [-0.00025, 0.00055], respectively. 
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Table 1. Posterior distribution of the GPD parameters (Model 1) 

 

Model Parameter 
Posterior 

mean 

Posterior 

standard 

error 

95% High density index 

2.50% 97.50% 

Model 1 α ϕ,0 2.088 0.00108 1.881 2.294 

 
α ϕ,1 

0.00015 0.000002 -0.00025 0.00055 

 
α ϕ 

0.272 0.00078 0.179 0.43 

 ̄ζ(x) 0.149 0.000319 0.143 0.156 

 α ϕ,0 2.087 0.00069 1.883 2.291 

 
α ϕ,1 

0.00015 0.000001 -0.00025 0.00054 

 
α ϕ 

0.273 0.00052 0.18 0.43 

 ζ(x1) 0.146 0.0071 0.123 0.17 

 ζ(x2) 0.164 0.01042 0.131 0.2 

 ζ(x3) 0.153 0.0067 0.131 0.177 

 ζ(x4) 0.157 0.00643 0.136 0.179 

 ζ(x5) 0.146 0.00666 0.125 0.168 

 

Additionally, Models 3 and 4 were similar in terms of their slopes and y-

intercepts, with a corresponding posterior intercept mean of around -9.3 and a 

posterior slope mean of (0.03, 0.09), with credible intervals around [-23.9, 4.7] 

for the intercept, [-0.024, 0.085] for the slope of the latitude, and [-0.02, 0.20] 

for the slope of the longitude. 

 

Table 2. Posterior distribution of the GPD parameters (Model 2) 

 

Model Parameter 
Posterior 

mean 

Posterior 

standard 

error 

95% High density index 

2.50% 97.50% 

Model 2 ζ(x6) 0.135 0.00648 0.114 0.159 

 ζ(x7) 0.154 0.00609 0.134 0.176 

 ζ(x8) 0.15 0.00605 0.131 0.17 

 ζ(x9) 0.138 0.00589 0.119 0.158 

 ζ(x10) 0.187 0.00878 0.159 0.217 

 ζ(x11) 0.15 0.00751 0.126 0.177 

 ζ(x12) 0.15 0.00729 0.127 0.175 

 ζ(x13) 0.159 0.00714 0.135 0.184 

 ζ(x14) 0.138 0.00606 0.119 0.159 
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The shape parameters of all models were between 0 and 1. This implied that 

the tail of the extreme distribution for all provinces was less heavy. Small 

shape parameter values implied that extreme precipitation events are more 

probable. This can affect strategies for risk reduction and management, and 

how to mitigate risks (Gilleland and Katz, 2016). 

 

Table 3. Posterior distribution of the GPD parameters (Model 3 and 4) 

 

Model Parameter 
Posterior 

mean 

Posterior 

standard 

error 

95% High density index 

2.50% 97.50% 

Model 3 α ϕ,0 -9.395 0.09695 -23.995 4.714 

 
α ϕ,1 

0.03 0.00032 -0.024 0.085 

 
α ϕ,2 

0.091 0.00076 -0.02 0.207 

 α ϕ 0.258 0.00083 0.164 0.423 

 ̄ζ(x) 0.149 0.00282 0.143 0.156 

Model 4 α ϕ,0 -9.284 0.0665 -23.294 4.779 

 
α ϕ,1 

0.0298 0.02669 -0.024 0.083 

 
α ϕ,2 

0.09 0.00052 -0.021 0.201 

 α ϕ 0.254 0.00055 0.165 0.409 

 ζ(x1) 0.146 0.00787 0.123 0.17 

 ζ(x2) 0.164 0.01188 0.131 0.2 

 ζ(x3) 0.153 0.00739 0.131 0.178 

 ζ(x4) 0.157 0.00686 0.136 0.178 

 ζ(x5) 0.146 0.00711 0.125 0.168 

 ζ(x6) 0.135 0.00768 0.114 0.158 

 ζ(x7) 0.154 0.00684 0.134 0.175 

 ζ(x8) 0.15 0.00691 0.131 0.17 

 ζ(x9) 0.138 0.00663 0.119 0.158 

 ζ(x10) 0.187 0.00977 0.158 0.218 

 ζ(x11) 0.15 0.00907 0.125 0.177 

 ζ(x12) 0.15 0.00788 0.127 0.175 

 ζ(x13) 0.159 0.0087 0.135 0.184 

 ζ(x14) 0.138 0.00673 0.119 0.159 

 

3.4 Model Comparison 

      

Table 4 shows the models’ DIC and corresponding values. The results 

indicated that Model 2 was the best-fitted model among all the fitted models, 
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with a DIC value of -23,839.92. This was followed by Model 1, which had a 

DIC value of -4,903.85. Models 3 and 4 had large DIC values of 3,377.69 and 

4,903.85, respectively. The model with varying shape parameters for each 

location best fitted the data using elevation as a predictor in estimating return 

levels. This indicated that elevation effectively predicted the return level of 

each province compared to the geographical coordinates. 

 

Table 4. Model performance measures 

 
Model D(bar) PD DIC 

Model 1 22727.04 -13815.4 -4903.85 

Model 2 28021.31 -25930.6 -23839.92 

 

3.5 Model Validation 

 

Tables 5 to 6 show the actual and fitted two, three, and five-year return levels 

of the best-fit model based on section 3.4.  

 

Table 5. Actual return levels 

 

 Two-year return level estimates 

Three-year return level 

estimates Five-year return level estimates 

Location 
Posterior 
mean 2.5% 97.5% 

Posteri

or 
mean 2.5% 97.5% 

Posteri

or 
mean 2.5% 97.5% 

Bukidnon 67.14 63.43 71.56 73.86 69.39 79.24 82.92 77.33 89.70 

Camiguin 73.22 67.74 80.07 81.38 74.66 89.87 92.47 83.92 103.40 

Lanao del 

Norte 

93.27 87.60 100.03 102.77 95.96 110.94 115.61 107.16 125.84 

Misamis 

Occidenta
l 

97.34 91.48 104.15 107.16 100.16 115.35 120.45 111.80 130.67 

Misamis 
Oriental 

69.21 65.50 73.56 76.03 71.57 81.31 85.23 79.68 91.86 

Zamboan

ga City 

51.27 48.84 54.20 56.20 53.26 59.78 62.82 59.13 67.35 

Zamboan

ga del 
Norte 

95.90 90.41 102.48 105.48 98.93 113.39 118.44 110.33 128.29 

Zamboan
ga del Sur 

88.00 83.24 93.65 96.64 90.96 103.42 108.30 101.29 116.74 

Zamboan

ga 
Sibugay 

59.09 56.32 62.31 64.70 61.38 68.60 72.23 68.10 77.11 

Davao de 

Oro 

180.29 164.44 199.87 200.52 181.49 224.27 228.29 204.59 258.23 

Davao del 
Norte 

71.09 66.85 76.26 78.42 73.29 84.74 88.32 81.89 96.33 

Davao del 

Sur 

76.88 72.33 82.29 84.67 79.19 91.23 95.18 88.35 103.44 

Davao 

Oriental 

94.47 88.35 101.86 104.31 96.95 113.26 117.64 108.46 128.90 

Davao 
Occidenta

l 

59.87 57.04 63.15 65.58 62.18 69.55 73.25 69.02 78.22 
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The tables demonstrated that the fitted return level values of Model 1, which 

utilized the elevation of each province as a predictor of the logarithmic 

transformation of the scale parameter, were close to their corresponding actual 

return level values. There was a slight difference between the actual and 

predicted values in terms of their posterior means, which represent the average 

return levels. 

Table 6. Fitted return levels 

 

Location 

Two-year return level estimates 

Three- year  return 

level estimates Five-year  return level estimates 

Posterior 

mean 2.5% 97.5% 

Posteri

or 

Mean 2.5% 97.5% 

Posteri

or 

Mean 2.5% 97.5% 

Bukidnon 74.15 52.82 106.62 81.68 57.63 118.56 91.82 64.04 134.83 

Camiguin 72.16 47.14 114.90 80.19 51.66 129.46 91.09 57.70 149.57 

Lanao del 

Norte 79.64 61.18 105.32 87.61 66.76 116.86 98.39 74.22 132.62 

Misamis 

Occidental 96.47 52.53 186.10 106.19 57.14 206.89 119.36 63.32 235.33 

Misamis 

Oriental 73.94 58.47 94.75 81.30 63.80 105.02 91.22 70.90 118.99 

Zamboanga 

City 65.51 52.21 83.44 72.09 57.00 92.59 80.91 63.36 104.99 

Zamboanga del 

Norte 89.52 58.08 142.27 98.40 63.23 157.80 110.42 70.14 179.01 

Zamboanga del 

Sur 86.36 59.10 129.37 94.82 64.33 143.25 106.24 71.33 162.15 

Zamboanga 

Sibugay 73.16 55.07 98.86 90.33 59.99 109.41 89.96 66.54 123.70 

Davao de Oro 104.29 62.81 179.90 115.58 68.75 201.75 131.07 76.80 232.17 

Davao del 

Norte 70.77 55.40 91.97 78.06 60.57 102.41 87.91 67.48 116.67 

Davao del Sur 74.48 58.15 96.82 81.99 63.49 107.53 92.13 70.62 122.14 

Davao Oriental 79.15 61.46 103.55 87.23 67.17 115.16 98.19 74.81 131.09 

Davao 

Occidental 82.47 45.35 158.49 90.69 49.25 176.03 101.72 54.45 199.80 

 

3.6 The Return Level Maps with Uncertainty Measures 

 

Figures 4 to 6 show the return level maps for the selected provinces in 

Mindanao. These maps displayed the posterior mean and associated 95% high 

density interval (HDI) for the two-, three-, and five-year return levels. 

Provinces in the Davao Region and Zamboanga Peninsula had the highest 

return level values compared with other regions.  

 

To illustrate, the mean return levels for extreme precipitation events over 

different time periods in Davao de Oro were as follows: 

 

Two-year return level was 104.3 inches, with a 95% probability that the true 

return level was between 62.8 and 179.9 inches. 
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Figure 4. Two-year return level plots of the selected provinces in Mindanao 

 

 
 

 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

Figure 5. Three-year return level plots of the selected Provinces in Mindanao 

 

Three-year return level was 115.6 inches, with a 95% probability that the true 

return level was between 68.8 and 201.7 inches. Five-year return level was 

131.1 inches, with a 95% probability that the true return level was between 

76.8 and 232.2 inches. This means that, on average, an extreme precipitation 

event with a magnitude of 104.3 inches is expected to occur once every two 

years, an event with a magnitude of 115.6 inches is expected to occur once 

every three years, and an event with a magnitude of 131.1 inches is expected 

to occur once every five years.  
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Figure 6. Five-year return level plots of the selected provinces in Mindanao 

 

The credible intervals indicate a 95% probability that the true return levels for 

these periods will fall within the specified ranges. This provides a measure of 

uncertainty around the estimates, helping to understand the range of possible 

extreme values and the confidence in the model’s predictions. 

 

 

 

4. Conclusion and Recommendation 

 

Bayesian hierarchical models can efficiently estimate selected provinces’ 

daily precipitation return levels using elevation and varying shape parameter 

values.  The shape parameters of the GPD of all provinces implied that the 

extreme values of all provinces occur most probable. The return level maps in 

disaster risk management and long-term planning. It is recommended that 

more parameters and other covariates be considered to extend the complexity 

of the model. 

 

 

 

5. References 
 

Cooley, D., Nychka, D., & Naveau, P. (2007). Bayesian spatial modeling of extreme 

precipitation return levels. Journal of the American Statistical Association, 102(479), 
824-40. https://doi.org/10.1198/016214506000000780 



A. A. Lague et al. / Mindanao Journal of Science and Technology / Vol. 22 (S1) (2024) 277-291 

 

291 

 

Dalrymple, T. (1960). Flood frequency analyses. Water supply paper 1543-A. Virginia, 
United States: U.S. Geological Survey. 

 

Fisher, R.A., & Tippett, L.H.C. (1928). Limiting forms of the frequency distribution 

of the largest or smallest member of a sample. Mathematical Proceedings of the 
Cambridge Philosophical Society, 24(2), 180-190. https://doi.org/10.1017/S03050041 

00015681 

 

Gilleland, E., & Katz, R.W. (2016). extRemes 2.0: An extreme value analysis package 
in R. Journal of Statistical Software, 72(8), 1-39. https://doi.org/10.18637/jss.v072.i08 

 

Hosking, J.R., & Wallis, J.R. (1997). Regional frequency analysis: An approach based 

on L-moments. Journal of the American Statistical Association, 93, 1233. 

 
Katz, R.W., Parlange, M.B., & Naveau, P. (2002), Statistics of extremes in hydrology. 

Advances in Water Resources, 25, 1287-1304.  
 

O’Sullivan, J., Sweeney, C., & Parnell, A.C. (2019). Bayesian spatial extreme value 

analysis of maximum temperatures in County Dublin, Ireland. Environmetrics, 31, 

e2621. https://doi.org/10.1002/env.2621 
 

Pickands, J. (1975).  Statistical inference using extreme order statistics. The Annals of 

Statistics, 3(1), 119-131. https://doi.org/10.1214/aos/1176343003 

 
Wadsworth, J.L., & Tawn, J.A. (2012). Likelihood-based procedures for threshold 

diagnostics and uncertainty in extreme value modelling. Journal of the Royal Statistical 

Society Series B: Statistical Methodology, 74(3), 543-567. 

https://doi.org/10.1017/S03050041
https://doi.org/10.1214/aos/1176343003

