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Abstract 
 

Fire disasters cause significant physical and emotional trauma worldwide, resulting 

in the loss of thousands of lives and billions of dollars in property damage. Delayed 

detection and reporting of fire incidents lead to slower response times, exacerbating 

the impact of fires. This study presents a video-based fire detection method integrated 

with a Geographic Information System (GIS)-based reporting platform aimed at 

enhancing real-world firefighting efforts. The fire detection method employed a hybrid 

approach, combining rule-based fire detection with a trained Support Vector Machine 

(SVM) classifier. The rule-based method utilized motion and color-based segmentation 

techniques, while the SVM classifier was trained using the chromatic and temporal 

features of fire objects. Test results showed that the module could detect fire in video 

streams with an overall classification accuracy of 99.66%, along with precision and 

recall rates of 99.38% and 99.97%, respectively, supported by an F1-score of 99.68%. 

This approach demonstrated excellent performance in predicting fires with minimal 

false alarms. Additionally, the GIS-based platform provides real-time information to 

responding agencies, further enhancing the effectiveness of firefighting operations. 

 

Keywords: fire detection, GIS, image processing, SVM, video 

                   
 

1. Introduction 

 

Fire disasters cause significant physical and emotional trauma to victims. In 

2017, fire services worldwide reported approximately 3.1 million fire cases 

and 16.8 thousand civilian fire deaths (WFSR, 2019). These incidents result 

in billions of dollars in property damage and countless lives affected by 

trauma. While many countries have reduced fire-related deaths through 

improved prevention efforts, low- and middle-income countries still 

experience high incidences of fire-related deaths and injuries (WFSC, 2012). 
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As a developing country, the Philippines continues to struggle with high rates 

of fire incidents, along with related deaths and injuries. Approximately 16,000 

fire incidents were recorded annually from 2015 to 2018 (PSA, 2019). 

Common causes include faulty electrical wiring and neglected open flames, 

though many causes remain undetermined. Most fires occur between 12:01 

A.M. and 3 A.M., primarily in residential areas (70.2%) and commercial areas 

(16.9%) (Velasco, 2013). Fire incidents often remain undetected until visible 

from the outside, leading to delayed reporting and challenging fire response 

efforts. The ideal response time is 5 to 7 minutes, but delays result in a wider 

fire spread upon responders’ arrival. Furthermore, traditional sensor-based fire 

alarm systems are prone to false alarms and rely on basic fire cues, leading to 

slower fire detection, particularly in large, open areas. Hence, computer 

vision-based fire detection offers a promising alternative, addressing the 

limitations of conventional sensors. 

 

Generally, computer vision-based fire detection methods can be classified into 

traditional rule-based and learning-based approaches. Rule-based methods 

(Chen et al., 2004; Gunawaardena et al., 2016; Chi et al., 2017; Vijayalakshmi 

and Muruganand, 2018) detect fire by analyzing features such as fire color, 

motion, shapes, and combined techniques. These methods are simple to 

implement and can achieve fire classification accuracy ranging from 71.43% 

to 98.89%. However, detecting large or tiny flames remains a significant 

challenge. In contrast, the learning-based approach employs machine learning 

to detect fire in videos. Various convolutional neural network (CNN) 

architectures, such as AlexNet, SqueezeNet, and GoogleNet have been 

optimized for fire detection in surveillance systems (Muhammad et al., 2018, 

2019). These architectures achieved high accuracy rates of 94.3 % to 94.5 %. 

However, they require a large number of network parameters and significant 

large on-disk storage, limiting their deployment on low-computing devices for 

real-time system applications. 

 

To address this challenge, several studies have utilized traditional machine 

learning techniques for fire detection systems in combination with rule-based 

techniques, resulting in some hybrid approaches that relatively consume fewer 

computing resources. Specifically, the researchers segmented fire and non-fire 

areas using the Hue Saturation Value (HSV) color analysis and the Gaussian 

Mixture Model (GMM) to extract Gabor filter statistical features. These 

features then serve as training input for a Support Vector Machine (SVM) 

classifier (Li et al., 2023). Similarly, an SVM classifier was trained to predict 

fire using convex hull, area variability, and centroid stability features (Darajat 
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et al., 2023). These fire classification models yielded accuracies of 97.34% 

and 86.61%, respectively. Alternatively, other researchers minimized CNN 

network parameters to achieve lightweight CNN architectures. For example, 

modifications to a shallow neural network for fire detection enabled 

deployment in mobile and embedded applications, achieving a prediction 

accuracy of 93.91% (Jadon et al., 2019). Another lightweight convolutional 

neural network employed a feature extractor that utilized convolution layers, 

depth-wise separable convolution layers, an inception module, and an 

attention mechanism to extract high-level feature maps. Additionally, its 

classifier applied a global average pooling layer for feature map dimension 

reduction and used the Softmax function to calculate the probability of each 

class, achieving a prediction accuracy of 96.08% (Nguyen et al., 2023). 

 

While these developments have enhanced the accuracy of fire detection, there 

is still considerable room for improvement in fire prediction accuracy, 

highlighting the need for additional research in this area. More importantly, 

despite advancements in the field, existing computer vision-based fire 

detection systems have significantly impact real-world firefighting efforts, as 

they lack a real-time reporting mechanism that could assist first responders in 

promptly responding to fire incidents. Geographic Information System (GIS) 

technology can optimize emergency services by supporting planning, 

preparedness, mitigation, response, and incident management (ESRI, 2007). 

However, GIS remains underutilized in fire incident management. 

 

Hence, this study introduces a video-based fire detection and reporting system 

for large urban areas that accurately detects fires through live video feeds and 

automatically reports them to a GIS-based fire incident management platform 

to eliminate communication gaps among first responders during fire disasters. 

This paper makes several notable contributions that significantly advance the 

understanding and application of fire detection and incident management 

technologies. It presents a hybrid fire detection method that combines rule-

based detection with a Support Vector Machine (SVM) classifier, achieving 

accurate fire prediction in videos through a novel fire object persistence 

density feature. Furthermore, it integrates a GIS-based fire incident 

management platform designed to address communication gaps among first 

responders. This platform facilitates coordinated response efforts and supports 

informed decision-making by providing timely access to relevant information. 
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2. Methodology 

 

The proposed framework of the integrated Fire Detection and Reporting 

Platform consists of two components: the fire detection and the fire incident 

reporting module. The concept involves detecting fire within a vicinity using 

a fire detection camera, which triggers an alarm in a fire-affected 

establishment and automatically reports the incident to the GIS Reporting 

Platform. The platform receives the GPS location and other fire-related data, 

which are plotted as location markers on the GIS map. These markers indicate 

the locations of different first responders, along with the nearest responding 

station relative to the fire location. Additional relevant information about the 

fire incident, including the captured fire image, is tagged on the markers. The 

different first responders will receive a real-time fire incident notification, as 

illustrated in Figure 1. 

 

 
 

Figure 1. Framework of the Integrated Fire Detection and Reporting 

 

2.1 Video-Based Fire Detection Module 

 

The hybrid fire detection method's flowchart illustrates the steps to identify 

fire in video streams, as depicted in Figure 2. 
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Figure 2. Hybrid Fire Detection Flowchart 

 

The process begins with Video Frames Segmentation, where incoming video 

streams are divided into manageable segments for analysis. Following this, 

Moving Region Detection identifies regions of interest that exhibit movement, 

which helps to isolate dynamic areas for further examination. Once movement 

is detected, the system proceeds to Fire Region Detection, applying a color 

masking technique to identify fire-like characteristics in the detected regions 

and extract chromatic and temporal features.  

 

Next, the system performs Fire Object Persistence Density Calculation, 

evaluating the temporal persistence of fire regions across multiple frames. 
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This step enhances detection accuracy by reducing false positives. Finally, the 

results are fed into an SVM Classification step, where a Support Vector 

Machine classifier confirms whether the detected region is indeed a fire.  

 

2.1.1 Moving Region Detection 

 

The moving region in each frame of the video stream is detected using 

absolute frame differencing. The approach begins by initializing the first 

frame as a reference or background model, which is then used to subtract any 

changes occurring in the subsequent frames. The difference between two 

frames is computed through a subtraction operation, where the absolute value 

of the differences in their corresponding pixel intensities (V-values of the HSV 

color model) is calculated, as shown in Equation 1. 

 

                               Vdelta= | V
background model

-Vcurrent frame |                                  (1) 

 

The Vdelta are the significant changes in pixel intensity values of the current 

frame from the background model or the first frame. The frame delta will then 

be a threshold to reveal the regions of the image that have significant changes. 

If the delta is less than 25, the pixel is discarded and set it to black (i.e., 

background). If the delta is greater than 25, it is set to white (i.e., foreground). 

This threshold is intuitively chosen, as values below 25 were found to 

represent no significant changes based on the experimental observations. 

 

2.1.2 Fire Region Detection 

 

In this study, the frame in the RGB color space was converted to the HSV 

(Hue, Saturation, Value/Brightness) color space to separate pixel values into 

intensity and chrominance, as shown in Figures 3a and 3b. In the HSV color 

space, detection is not solely dependent on hue but also considers saturation 

and luminance values, which help filter out non-fire pixels in the frames. To 

achieve this, the process involved three steps: (1) collect a fire image dataset 

and manually extract the RGB values of fire pixel samples; (2) compute the 

average RGB values from all pixel samples; and (3) convert the average RGB 

values to the HSV color space to determine the upper and lower limits of HSV 

values for the color masking process. At the end of the sampling process, 

which included 1,250 diverse fire images, a range of HSV values was 

established: 0, 100, 100 (lower limit) to 25, 255, 255 (upper limit). This range 

was used to extract fire-like pixels from any given frame. 
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Figure 3. RGB to HSV frame conversion and manipulation 

 

2.1.3 Fire Object Persistence Density Calculation 

 

In typical fire scenarios, real fire remains within a consistent spatial area 

across video frames, gradually expanding or contracting, whereas non-fire 

objects appear and disappear unpredictably. To address this, Persistence 

Density, a novel metric for spatio-temporal fire analysis, was introduced. It 

clusters objects based on their consistency in appearing within similar regions 

over time. By assessing the stability and location of these objects, it can 

effectively distinguish between persistent fire and sporadic non-fire elements, 

enabling more accurate fire detection. 

 

To quantify the persistence of fire regions in a video, each frame is processed 

to detect the presence of fire. Given a sequence of video frames, each frame 

𝐹𝑡, where 𝑡 denotes the frame index, undergoes fire detection. Fire detection 

is accomplished by generating a binary mask 𝑀𝑡(𝑥, 𝑦) for each frame. In this 

mask, 𝑀𝑡(𝑥, 𝑦) = 1 if fire is detected at pixel (𝑥, 𝑦) in frame 𝑡 and 𝑀𝑡(𝑥, 𝑦) = 

0 otherwise.   

 

Subsequently, a persistence matrix 𝑃(𝑥, 𝑦) is computed for each pixel, which   

counts the total number of frames in which fire is detected at that pixel across 

a sequence of 𝑡 frames. The persistence matrix is given by Equation 2: 

 

                                          P(x,y)= ∑ Mt(x,y) T
t=1                                                              (2) 

 

To account for transient fire occurrences, a time-decay weighted persistence 

matrix is introduced, which assigns more importance to recent fire detections. 

This is achieved using an exponential decay function (Equation 3), where λ is 

the decay rate: 

 

                                           P(x,y)= ∑ Mt(x,y) e-λ(T-t) T
t=1                                      (3) 

 
 

(a) (b) (c) 
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Finally, the persistence density 𝐷(𝑥, 𝑦) (Equation 4) is calculated by 

normalizing the persistence matrix by the total number of frames 𝑇. This 

results in a value between 0 and 1, representing the proportion of frames in 

which fire is detected at pixel(𝑥, 𝑦): 

 

                                             D(x,y)= 
P(x,y)

T
                                                            (4) 

 

2.1.4 SVM Classification 

 

In this study, the SVM classifier was trained using 19 features, consisting of 

the mean and standard deviation of color features for both HSV and RGB, as 

well as spatio-temporal features, including persistence density. The 

hyperparameters of the SVM classifier were configured with an ‘rbf’ kernel, 

gamma set to ‘auto’, a regularization parameter C was set to 1, and class 

weight was set to ‘balanced’. 

 

Consequently, classification of data samples was performed for 𝑇 number of 

frames, which corresponds to the window size used for calculating the 

persistence density and other temporal features. In the experiment, the value 

of 𝑇 was set to 10. Cameras typically capture images at an average of 30 

frames per second, including the Raspberry Pi Camera module. Therefore, 

classification occurs every one-tenth of a second. In the end, the model 

predicted based on the input variables, which resulted in either 0 (NO FIRE) 

or 1 (FIRE).  

 

2.1.5 Training and Validation Dataset 

 

Due to the scarcity of fire video datasets, additional videos were recorded and 

supplemented with publicly available datasets, including those from FireNet 

(Jadon et al., 2019) and Foggia’s (Foggia et al., 2015) collections. 

Consequently, the training and validation dataset consisted of 193 videos, 

including 101 fire videos and 92 non-fire videos. The sample videos in the 

dataset are depicted in Figure 4.  

 

The number of segmented and extracted fire and non-fire regions from each 

video frame determines the sample count of the dataset, not the total number 

of videos. Table 1 presents the aggregate of extracted fire and non-fire 

samples. 
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Table 1. Training and Validation dataset 

 

Source Fire samples Non-fire samples 

Own dataset 20,554 20,666 

FireNet 4,274 1,861 

Foggia’s 12,699 7,587 

Total 37,527 30,114 

 

 
 

Figure 4. Training and Validation Video Samples 

  

2.1.6 Performance Metrics 

 

The confusion matrix is a fundamental tool used in machine learning to 

evaluate the performance of a classification model. It provides a visual 

representation of the model's predictions compared to the actual classes. This 

matrix helps identify how effectively the model distinguishes between 

different classes, with its components detailed in Table 2. 

 

Table 2. Confusion Matrix 
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 Actual Label 

 Positive Negative 

Positive TP FP 

Negative FN TN 

 

The following are the terms associated with the Confusion Matrix: 

 

1. True Positives (TP): Cases where fire is present (1, True) 

and the model correctly predicts fire (1, True). 
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2. True Negatives (TN): Cases where fire is absent (0, False) 

and the model correctly predicts no fire (0, False). 

3. False Positives (FP): Cases where fire is absent (0, False) 

but the model incorrectly predicts fire (1, True). This is a 

false prediction indicating a fire when there isn’t one. 

4. False Negatives (FN): Cases where fire is present (1, True) 

but the model incorrectly predicts no fire (0, False). This is 

a false prediction indicating no fire when there is one. 

 

The evaluation of the SVM model's performance was conducted using 

performance metrics derived from the Confusion Matrix presented in Table 3. 

 

Table 3. Performance Metrics of Fire Classification Models 

 

Metrics Formula Description 

Accuracy 
TP+TN

TP+TN+FP+FN
 

Overall ability of a model to make 

correct predictions. 

   

Precision 
TP

TP+FP
 

Ability of model to correctly 

predict within the fire class 

   

Sensitivity 

(Recall) 

TP

TP+FP
 

Ability of model to correctly 

predict fire labels 

   

Specificity 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Ability of model to correctly 

predict non-fire labels 

   

F1-score 
2×Precision×Sensitivity

TP+FP
 

Harmonic mean of sensitivity and 

precision 

   

False Positive 

Rate (FPR) 

FP

FP+TN
 

Proportion of non-fire labels that 

are incorrectly classified as fire 

labels 

   

False 

Negative Rate 

(FNR) 

FN

FN+TP
 

Proportion of fire labels that are 

incorrectly classified as non-fire 

labels 

 

2.2 Fire Incident Reporting Module 

 

Figure 5 illustrates the key components and flow of information within the 

Fire Incident Reporting Platform. It showcases the integration of various 

modules, including data collection from the camera, real-time fire detection 
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using a hybrid fire detection method, and user interfaces for incident reporting. 

The architecture also highlights the Incident Management Dashboard, 

notification systems for alerting stakeholders, and cloud storage for secure 

data management. Overall, this figure provides a visual representation of how 

the platform enhances fire safety management through efficient detection and 

reporting. 

 

 
 

Figure 5. Conceptual Framework of the Fire Incident Reporting Platform 

 

As illustrated in Figure 5, the Fire Incident Reporting Module involves one or 

more (1) fire detection cameras connected to a wired or wireless local area 

network (LAN) through a (2) router or modem linked to the cloud. This 

connection is necessary to enable any of the fire detection cameras to transmit 

data to a (3) cloud or web host whenever fire is detected within a certain area. 

The cloud/web host provides both web and database service and includes a (4) 

database server accessible to multiple (5) first responders. First responders 

from different agencies can retrieve fire information from the database 

through a web application served on the internet. Likewise, the (6) fire 

incident commander of the ongoing response operation will have access to fire 

information in the web application via a mobile device and will be able to set 

the alarm level of the fire in real-time.  

 

2.2.1 Fire Incident Reporting Web Application 

 

The fire incident reporting web application is built on an edge computing 

architecture as shown in Figure 6.  

(4) Database Server 

(3) Cloud/Web Host 

(2) Modem/Router 

(6) Fire Incident Commander 

on Mobile Data 
(5) Responding Stations 
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Figure 6. System Layered Architecture 

 

The system architecture for the fire incident reporting web application is 

organized into four layers: application, cloud, edge, and device. The 

application layer functions as the front end, built with HTML, CSS, and 

JavaScript, providing users with an interface to view fire alerts and incident 

reports. This layer communicates seamlessly with the backend to provide real-

time fire detection data. The cloud layer manages backend processes, utilizing 

MySQL for database management, PHP for server-side logic, and the server 

file system for storage. It also incorporates cron jobs to automate routine tasks 

like backups and report generation. This layer efficiently handles data 

processing and storage, working with the edge layer for real-time updates. The 

edge layer focuses on real-time fire detection using OpenCV and the machine 

learning model, analyzing data from devices like cameras to detect fire 

incidents locally and reduce latency. This layer communicates detection 

results to the cloud for further action or storage. The device layer includes 

hardware like Raspberry Pi units and Pi Cameras, which capture video and 

send it to the edge for immediate processing. Background software such as 

Apache connects the application and cloud layers, while Tornado with 

WebSocket ensures real-time communication between the edge and cloud, 

supporting fast, low-latency fire detection across the system. 

 

2.2.2 Functionality Testing 

 

The fire reporting platform was tested using test cases to verify its 

functionality with certain data inputs. The main focus of the test was to 

determine whether the fire detection module could effectively communicate 

with the fire reporting platform through the layers of the edge computing 

architecture. The actual functionality tests involved identifying expected 
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outputs to serve as a basis for comparison with the system’s actual behavior. 

A total of 10 testers were involved in the study. 

 

 

 

3. Results and Discussion 

 

All experiments conducted in this study were performed on a local machine 

with an Intel Core i7, 7th Gen Processor CPU at 2.80 GHz, 12 GB RAM, and 

an NVIDIA GeForce GTX 1050 2GB. The dataset was split into 80% for 

training and 20% for validation. Additionally, 27 videos from the FireSense 

dataset (Grammalidis et al., 2017) were used as the test dataset. 

 

3.1 Feature Importance Analysis 

 

The feature importance analysis for the SVM classifier in fire detection was 

done using the SHapley Additive exPlanations (SHAP), highlighting the 

contributions of key features to the model's accuracy as shown in Figure 7. 

 

 
Figure 7. SHAP Analysis of Feature Impact in SVM Classifier 

 

The SHAP analysis highlights the significant influence of key features on the 

SVM classifier's performance in fire detection. As shown in Table 4, the SVM 

classifier achieved accuracy rates of 98.90% for training and 98.83% for 

validation, demonstrating its reliability in differentiating between fire and 

non-fire events. Notably, the persistence_density feature has the highest 

 

Class 0 

persistence_density 

std_color_G 

mean_color_G 

centroid_y 

mean_motion Class 1 

mean(ISHAP valueI) (average impact on model output magnitude) 

        0.00        0.02        0.04        0.06        0.08        0.10        0.12        0.14 
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SHAP value, making a substantial contribution to the model's decisions, 

particularly in predicting Class 1 (fire events). Its impact is reflected in the 

low false positive rates (0.80% for training and 1.06% for validation) and false 

negative rates (1.39% and 1.26%), ensuring the model effectively minimizes 

false alarms and accurately identifies real fire incidents. 

 

Table 4. Performance of SVM classifier 

 

Metrics Training (%) Validation (%) Test (%) 

Accuracy 98.90 98.83 99.66% 

False 

Positive 
0.80 1.06 0.62% 

False 

Negative 
1.39 1.26 0.03% 

Precision 99.24 98.99 99.38% 

Recall 98.61 98.74 99.97% 

F1-score 98.92 98.86 99.68% 

 

Furthermore, the high precision (99.24% for training and 98.99% for 

validation) indicates that fire predictions are highly accurate, while the 

impressive recall values (98.61% and 98.74%) demonstrate the model's ability 

to detect most fire events. With a test dataset accuracy of 99.66%, the model 

proves its reliability when faced with unseen data, confirming its effectiveness 

across different conditions. The balanced F1 scores across datasets show a 

good balance between precision and recall, making the SVM classifier a 

reliable tool for fire detection. Figure 8 depicts the fire prediction samples 

from the test dataset. 

Figure 8. Fire detection samples in test dataset 

3.2 Comparative Analysis 

 

The confusion matrix in Table 5 shows the actual labels against the predicted 

labels based on the classification result of the trained SVM model on the test 

dataset.  
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Table 5. Confusion matrix of prediction on the FireSense dataset. 
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 Actual Label 

 Fire Not Fire 

Fire 7540 47 

Not Fire 2 6940 

Support 7542 6987 

 

The confusion matrix highlights the fire detection model's performance, 

showing that out of 7,542 predicted "Fire" instances, 7,540 were correct, with 

only 2 false negatives. Conversely, the model accurately identified 6,940 out 

of 6,987 non-fire instances, resulting in just 47 false positives. This indicates 

a strong capacity for distinguishing between fire and non-fire events, as 

evidenced by the minimal misclassification. These values were instrumental 

in calculating key performance metrics, including accuracy, false positive rate 

(FPR), false negative rate (FNR), precision, recall, and F1-score on the test 

dataset, which were compared to existing fire detection models, as depicted in 

Table 6. 
  

Table 6. Performance comparison against SVM-based hybrid methods 

 

Metrics Jadon et al. (2019) Darajat et al. (2023) 
Proposed 

Method 

Accuracy 93.91 86.61 99.66% 

False 

Positive 
1.95 12.50 0.62% 

False 

Negative 
4.13 14.69 0.03% 

Precision 94 82.43 99.33% 

Recall 97 85.31 99.97% 

F1-score 95 83.85 99.65% 

 

The performance metrics of various SVM-based hybrid methods, as shown in 

the table above, reveal significant improvements in fire detection capabilities. 

The proposed method achieves an impressive accuracy of 99.66%, indicating 

optimizations in model performance compared to previous works. 

Specifically, Jadon et al. (2019) and Darajat et al. (2023) reported accuracies 

of 93.91% and 86.61%, respectively. Additionally, the proposed method's 

false positive and false negative rates are 0.62% and 0.03%, respectively, 

suggesting improved precision by minimizing false alarms and missed 

detections. Noteworthy enhancements in precision and recall are also evident, 

with the proposed model reaching 99.33% and 99.97%, respectively. These 
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improvements reflect a refined balance between identifying true positives and 

reducing errors. Although these models were not assessed on the same 

datasets, the advancements highlighted in these metrics underscore the 

ongoing progress in SVM-based hybrid fire detection methodologies. 
 

Furthermore, to gain a better understanding of how the proposed hybrid model 

compares with state-of-the-art CNN-based models tested on the FireSense 

dataset, a comparison of their respective overall accuracies is presented in 

Table 7. 

 

Table 7. Accuracy comparison with CNN-based models on FireSense dataset 

 

Model Accuracy (%) 

SqueezeNet 100 

MobileNetV2 100 

VGG13 87.03 

NASNetMobile 96.76 

InceptionV3 96.76 

Proposed Hybrid Model 99.66 

 

The accuracy of various models on the FireSense dataset showcases the 

effectiveness of different architectures in fire detection tasks. As indicated in 

Table 7, both SqueezeNet and MobileNetV2 achieve perfect accuracy of 

100%, demonstrating their exceptional performance in this specific context. 

In contrast, other models, such as VGG13 with an accuracy of 87.03%, and 

NASNetMobile and InceptionV3, both at 96.76%, exhibit varying levels of 

efficacy. Notably, the proposed hybrid model achieves a robust accuracy of 

99.66%, positioning it as a highly effective alternative among the tested 

models. These results emphasize the competitive nature of contemporary fire 

detection models while highlighting the potential of hybrid approaches to 

bridge the performance gaps observed in traditional convolutional neural 

network (CNN) architectures. 

 

3.3 Functionality Test Results 
 

Ten participants were involved in testing various scenarios to verify whether 

the fire detection module could effectively communicate through the layers of 

the edge computing architecture. Each test case compared the system’s actual 

behavior with predefined expected outputs. Notably, all 10 participants 

confirmed that the system performed the task as expected, successfully 

detecting fire incidents and relaying alerts through the platform without issues. 

This consistency across all testers demonstrates the platform’s robustness, 
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confirming that the fire detection and reporting modules operated as intended 

across the device, edge, cloud, and application layers. A sample test case 

illustrating this process is shown in Figure 9. Additionally, the interface 

displaying a GIS map for plotting reported fire incidents is shown in Figure 

10, offering a visual representation of fire locations in real-time. These results 

validate the platform’s functionality and its seamless integration. 

 
Figure 9. Sample Test Case for functionality testing 

 

 

Figure 10. Fire incident Reports on GIS Map 
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4. Conclusion and Recommendation 

 

This study presented a video-based fire detection module integrated with a 

Geographic Information System (GIS)-based reporting platform to enhance 

real-world firefighting. The fire detection method employed a hybrid 

approach, combining a rule-based classification scheme with a Support Vector 

Machine (SVM) classifier. The introduction of a novel persistence density 

feature as one of the training inputs, along with other relevant chromatic and 

dynamic features, had a significant impact on the overall accuracy of the 

classifier, as supported by the SHapley Additive exPlanations (SHAP) 

analysis results. Consequently, the hybrid fire detection method achieved a 

0.03% false negative rate and a 0.62% false positive rate. The overall 

classification accuracy was 99.66%, with precision and recall rates of 99.33% 

and 99.97%, respectively, and an F1-score of 99.65%. These metrics 

demonstrate the module's excellent performance in predicting fire in video 

streams with minimal false alarms. Additionally, the GIS-based reporting 

platform passed all functionality tests, effectively meeting the needs of real-

world fire response operations. 

 

Based on these findings, several recommendations were made to improve the 

study for future research. First, incorporating smoke detection as a criterion in 

the fire detection module could improve early-stage fire detection. Second, 

expanding the dataset to include more diverse fire scenarios would enhance 

the model's robustness. Lastly, it is essential to perform further testing in real-

world scenarios to comprehensively assess the system's performance with 

respect to response time, reliability, user experience, and security. This 

acknowledgment will not only refine the system's capabilities but also set a 

clear direction for future research efforts.  

 

 

 

5. Acknowledgment  

The authors would like to acknowledge the contribution of the Bureau of Fire 

Protection—Region 10 in the completion of this research by extending the 

knowledge and expertise relevant to the standard fire response procedures. 

 

 

 

 

 



A. V. M. Calo & J. B. Barbosa  / Mindanao Journal of Science and Technology Vol. 22 (2) (2024) 123-142 

 

141 
 

6. References 

 

Brushlinsky, N.N., Ahrens, M., Sokolov, S.V., & Wagner, P. (2019), World Fire 

Statistics Report. Center of Fire Statistics of International Association of Fire and 

Rescue Services No. 24 

 
The Geneva Association. (October 2012). World Fire Statistics Bulletin. Retrieved 

January 25, 2020 from genevaassociation.org: 

http://genevaassociation.org/PDF/WFSC/GA2012-FIRE28.pdf 

 
Philippine Statistics Authority. (2019). 2019 Philippine Statistical Yearbook. 

https://psa.gov.ph/system/files/psy/2019-PSY_61322_0.pdf 

 

ESRI (2007). GIS for Fire Station Locations and Response Protocol. An ESRI® White 
Paper. ESRI 380 New York St., Redlands. 

 

Chen, T.H., Wu, P.H., & Chiou, Y.C. (2004). An early fire-detection method based on 

image processing. 2004 International Conference on Image Processing, 2004. ICIP 
’04., 3, 1707-1710 Vol. 3. https://doi.org/10.1109/ICIP.2004.1421401 

 

Chi, R., Lu, Z.M., & Ji, Q.G. (2017). Real-time multi-feature based fire flame detection 

in video. IET Image Processing, 11(1), 31–37. https://doi.org/10.1049/iet-
ipr.2016.0193 

 

Darajat, A.N., Sthevanie, F., & Ramadhani, K.N. (2023). Fire Detection on Video 
Using Multi-Feature Fusion and Support Vector Machine. 2023 11th International 

Conference on Information and Communication Technology (ICoICT), 600–605. 

https://doi.org/10.1109/ICoICT58202.2023.10262454 

 
Foggia, P., Saggese, A., & Vento, M. (2015). Real-Time Fire Detection for Video-

Surveillance Applications Using a Combination of Experts Based on Color, Shape, and 

Motion. IEEE Transactions on Circuits and Systems for Video Technology, 25(9), 

1545–1556. https://doi.org/10.1109/TCSVT.2015.2392531 
 

Grammalidis, N., Dimitropoulos, K., & Cetin, E. (2017). Firesense Database Of Videos 

For Flame And Smoke Detection [Dataset]. Zenodo. 

https://doi.org/10.5281/ZENODO.836748 
 

Gunawaardena, A.E., Ruwanthika, R.M.M., & Jayasekara, A.G.B.P. (2016). Computer 

vision based fire alarming system. 2016 Moratuwa Engineering Research Conference 

(MERCon), 325–330. https://doi.org/10.1109/MERCon.2016.7480162 
 

Jadon, A., Omama, M., Varshney, A., Ansari, M.S., & Sharma, R. (2019). FireNet: A 

Specialized Lightweight Fire & Smoke Detection Model for Real-Time IoT 

Applications (arXiv:1905.11922). arXiv. http://arxiv.org/abs/1905.11922 
 

Li, G., Yang, B., Chang, S., Yi, H., Zhang, Y., & Wang, Y. (2023). Gaussian Process 

for the Machine Learning-based Smart Fire Detection System. 2023 International 

Conference on Computers, Information Processing and Advanced Education (CIPAE), 
446–452. https://doi.org/10.1109/CIPAE60493.2023.00091 

 



A. V. M. Calo & J. B. Barbosa  / Mindanao Journal of Science and Technology Vol. 22 (2) (2024) 123-142 

142 
 

Muhammad, K., Ahmad, J., Mehmood, I., Rho, S., & Baik, S.W. (2018). Convolutional 

Neural Networks Based Fire Detection in Surveillance Videos. IEEE Access, 6, 

18174–18183. https://doi.org/10.1109/ACCESS.2018.2812835 

 
Muhammad, K., Khan, S., Elhoseny, M., Hassan Ahmed, S., & Wook Baik, S. (2019). 

Efficient Fire Detection for Uncertain Surveillance Environment. IEEE Transactions 

on Industrial Informatics, 15(5), 3113–3122. IEEE Transactions on Industrial 

Informatics. https://doi.org/10.1109/TII.2019.2897594 
 

Nguyen, D.L., Putro, M.D., & Jo, K.H. (2023). Lightweight Convolutional Neural 

Network for Fire Classification in Surveillance System. IEEE Access, 11, 101604–

101615. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3305455 

 

Velasco, G.N.V. (2013). Epidemiological Assessment of Fires in the Philippines, 

2010-2012. 

 
Vijayalakshmi, S.R., & Muruganand, S. (2018). Fire alarm based on spatial temporal 

analysis of fire in video. 

 

 


