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Abstract 
 

The nighttime boat detection system utilizes the Day/Night Band (DNB) from the 

Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-

orbiting Partnership (Suomi-NPP) Satellite. However, no locally developed algorithm 

exists for nighttime boat detection. This study aims to develop an algorithm that 

processes irradiance data from Suomi-NPP Science Data Records to extract boat 

locations based on nighttime lights. For the first time in Philippine waters, the study 

implemented a locally developed nighttime fishing boat detection system and recorded 

detections for potential temporal analysis of fishing activities. The process of 

generating the nighttime lights for boat detection involves several filtering steps to 

exclude extraneous features, such as flashes of lightning, moonlight, stray light, and 

high-energy atmospheric particles. The filtered radiance spikes and sharpness are then 

characterized to generate boat detections from the low-light data. Due to the absence 

of Automated Identification Systems (AIS) for marine vessels in the Philippines, the 

boat detection algorithm is tested on available AIS data from the Gulf of Mexico. The 

developed nighttime boat detection algorithm achieved a precision rate of 71.76% 

comparable to a commercially available system (75.06 %). The AIS and satellite data 

used for validation were timestamped on May 31, 2022, from 00:12 AM to 00:18 AM 

(Mexico Local Time). With this system integrated into local monitoring efforts, 

authorities will gain enhanced flexibility, allowing them to tailor the system to the 

community's needs. Ultimately, it complements the efforts of both local and global 

agencies in monitoring and educating the community on the responsible utilization of 

marine resources.  
 

Keywords: Day-Night Band, marine vessels monitoring, nighttime lights, remote  

                  sensing, satellite low-light imaging   
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1. Introduction 

 

The use of nighttime lights for remote sensing applications has been made 

possible by the development of low-light-detecting satellites in the past few 

decades. The U.S. Defense Meteorology Satellite Program/Optical Line 

Scanner (DMSP/OLS) was the first satellite designed for nighttime detection, 

launching in 1973 and operating for over 40 years (Kumar et al., 2017; Pereira, 

2002; Verma, 2016). The Visible Infrared Imaging Radiometer Suite (VIIRS) 

onboard the Suomi National Polar-orbiting Partnership (SNPP) represents a 

major improvement over its predecessor with its multispectral sensors and 

onboard calibration system (Xie et al., 2014). The primary objective of the 

VIIRS instrument is to detect clouds using moonlight instead of sunlight, a 

fundamental requirement for meteorologists (Elvidge et al., 2017). However, 

the benefits of the use of VIIRS low-light imaging extend far beyond 

meteorology. Numerous techniques and approaches have been applied to filter 

and process nighttime light satellite data, enabling its use in a wide range of 

applications and studies. These include natural water resources (Huang et al., 

2016; Sheffield et al., 2018), city planning (Jiang et al., 2020; Cai et al., 2021), 

energy monitoring (Sun et al., 2020; Kong et al., 2022), carbon modeling 

(Zhang et al., 2017), urban geography (Yang et al., 2019; Sharma et al., 2016), 

ecology (Xu et al., 2019), and demography (Xie et al., 2014).  

 

Among the remote sensing applications of VIIRS, its use in boat detection 

emerged as a valuable tool in maritime security, fisheries management, and 

environmental protection. Researchers have employed different approaches to 

process the nighttime light data collected by the VIIRS instrument to detect 

boats. One approach involves feature engineering to identify the 

characteristics of the emitted light applying a rule-based classifier, often using 

thresholding to determine if the light originates from a boat. Another common 

approach is the use of machine learning or deep learning in classification.   

 

The boat detection system developed by the Earth Observation Group 

(Elvidge et al., 2015) employed a rule-based approach to classify nighttime 

lights as either lit boats or not. The science data records (SDRs) retrieved from 

the VIIRS instrument are stretched and scaled to render a grayscale image of 

the subject area at night. A series of filters enhances the intensity and 

distribution of light in the image. Thresholding the measurements of these 

intensity and distribution characteristics allows for the differentiation between 

boats and other sources of light. In addition to intensity and distribution, 

diffusion measurements can also be used as features for classifying nighttime 
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lights, as proposed by Xue et al. (2022).  The study of Kim et al. (2021) 

adopted a similar approach but incorporated moon phases to determine the 

thresholds used for classifying lit boats. In this study, the same set of features 

was used to characterize the nighttime lights, but an adaptive threshold based 

on sky conditions at different moon phases was applied rather than using an 

expert-identified threshold. 

 

The machine learning approach primarily differs in the classifier used in boat 

detection, but similar features are extracted from the retrieved SDRs. In a 

study conducted by Tsuda et al. (2023), the feature vector generated to 

represent regions with lit boats includes Day/Night Band (DNB) radiance, 

spike median index, spike height index, maximum integer cloud mask, moon 

illumination, and zenith angles of the satellite, the moon, and the sun. The 

Random Forest (RF) algorithm is then used for classification. However, this 

feature extraction process can be automated using deep learning techniques, 

as proposed by Shao et al. (2021), where automated feature extraction occurs 

in convolutional neural networks (CNN) in a small-object detection model. 

 

Several studies on boat detection systems using VIIRS low-light images focus 

on waters surrounding Japan (Liu et al., 2015), Indonesia (Elvidge et al., 

2018), China (Shi and Wang, 2018), the Philippines (Geronimo et al., 2018), 

Arabian regions (Sarangi and Narayanan, 2021), and others. Although a study 

on fishing boat detection was conducted in Philippine waters by Geronimo et 

al. (2018), they used the commercial boat detection system provided by Earth 

Observation Group (Elvidge et al., 2015).  

 

The Philippines, with its vast archipelago of more than 7,000 islands, 

encompasses a diverse marine environment that includes calm waters and 

rough waters shaped by monsoonal winds and ocean dynamics (Boquet, 

2017). Navigating the region presents challenges due to its varied geology and 

frequent weather disturbances, despite its strategic location along major 

international shipping routes. Additionally, the Philippines' abundant fishing 

grounds are vital to its maritime activities and have a significant economic 

impact on the country and its coastal communities. However, the fishing sector 

faces challenges like overfishing and environmental degradation, highlighting 

the need for sustainable management techniques (Liu et al., 2021). One critical 

piece of management information that could help monitoring agencies is the 

characterization of shipping and fishing activities using boat detection 

systems. 
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At the time of writing, no locally developed algorithm exists for nighttime 

boat detection in the Philippines. This study aims to develop an algorithm that 

processes irradiance data from Suomi-NPP Science Data Records to extract 

boat locations based on nighttime lights. For the first time in Philippine waters, 

this study implemented a locally developed nighttime fishing boat detection 

system and recorded these detections for potential temporal analysis of fishing 

activities. 

 

 

 

2. Methodology 

 

The VIIRS DNB Boat Detection algorithm aims to estimate the total number 

of lit boats or marine vessels during nighttime. Figure 1 summarizes the 

algorithm for boat detection. The process starts with the input of Science Data 

Records (SDRs), which contain the sensor readings retrieved from the VIIRS 

instrument, which is available at NASA’s LAADS-DAAC (Level-1 and 

Atmosphere Archive & Distribution System Distributed Active Archive 

Center, n.d.). The SDR is reoriented to align with the subsequent processing, 

which includes both linear and logarithmic scaling. Scaling adjusts the data 

range of the sensor measurements. To smooth out the data after scaling, 

Weiner and median filters were applied. The algorithm simultaneously detects 

lightning to differentiate between boat lights and natural lightning. Filtered 

data is subtracted to highlight significant features such as spikes indicative of 

potential boat detections. The relative height of these spikes is measured to 

distinguish stronger signals, such as boats, from weaker ones. An S3 sharpness 

indexing step assesses the sharpness of the detected spikes to further refine the 

classification. Finally, the algorithm classifies the spikes based on 

characteristics such as height and sharpness, generating a list of detected boats. 

 

Out of the 15 data products retrieved from VIIRS onboard the Suomi-NPP 

satellite, the VNP02DNB and VNP03DNB SDRs were selected for this study. 

The data fields from these SDRs, which represent the radiance DNB data and 

the geographic information, have been reoriented to match the conventional 

North. Due to the very low radiance measurements, both linear and 

logarithmic scaling are employed. At this stage, the SDR can be treated as a 

grayscale image. 
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Figure 1. Overview of the boat detection algorithm from data acquisition to final 

detection, including preprocessing, feature extraction, and classification 

 

2.1 Data 

 

The core algorithm ingests sensor data records (SDRs), specifically the 

VNP02DNB and VNP03DNB data from the VIIRS instrument onboard the 

Suomi National Polar-orbiting Partnership (SNPP) satellite, downloaded 

through the Level-1 and Atmosphere Archive & Distribution System 

Distributed Active Archive Center (LAADS DAAC). The VNP02DNB and 

VNP03DNB are the L1B data generated from a 6-minute granule covered by 

SNPP, containing radiance observations and geolocation data, respectively. At 

the nadir, the DNB, which is categorized as an M-band, has a spatial resolution 

of 750 meters for the full scan. The panchromatic DNB operates in the 0.5 µm 

to 0.9 µm spectral range, which is useful for capturing night lights and solar 

and lunar reflections. It displays a wide dynamic range, ranging from quarter-

moon illumination to bright daylight. The VNP03DNB data holds the line-of-
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sight (LOS) vectors for the single panchromatic Day-Night band (DNB). To 

generate these vectors, the geolocation algorithm relies on inputs such as the 

SNPP platform's ephemeris and attitude data, VIIRS sensor and satellite 

geometry, Earth ellipsoid, geoid, and digital terrain model. Each pixel in the 

VIIRS L1 image corresponds to geodetic coordinates (latitude and longitude) 

as well as additional information provided by the VNP03DNB including 

latitude, longitude, surface height above the geoid, solar, lunar, and sensor 

zenith and azimuth angles, land/water mask, moon illumination fraction and 

phase angle, and a quality flag for each pixel location. These SDRs are 

ingested into the VIIRS DNB algorithm to map lights on the earth’s surface, 

followed by filtering to remove the noise from atmospheric phenomena such 

as lightning and ionospheric particle discharges. The strongest light intensities 

are assumed to be fishing vessels, as these boats use lights for navigation to 

attract prey. The SDR is downloaded in NetCDF (.nc) file format. Figure 2 

shows the file attributes associated with the SDR. The file attributes show the 

multidimensional structure of the science data. The file was created on May 

7, 2021, and is titled "VIIRS Day/Night Band Data," identified by the short 

name "VNP02DNB." The long name describes the data product in detail: 

"VIIRS/NPP Day/Night Band 6-Min L1B Swath 750m," indicating a Level 

1B data product with a 750-meter resolution. The data originates from the 

VIIRS instrument onboard the Suomi National Polar-orbiting Partnership 

(NPP) satellite, which captures imagery in visible and infrared wavelengths. 

 

 
 

Figure 2. Global attributes of the VIIRS/NPP Day/Night Band Moderate Resolution 

Terrain-Corrected Geolocation 6-Min L1 Swat 750m (VNP03DNB) Science 

Data Records file 

 

2.2 SDR Processing 

 

The collected SDRs are reoriented first before any signal processing. This 

reorientation process is identical to the transpose operation in matrices, which 

is necessary due to the arrangement of the detectors in the VIIRS instrument. 

Linear and logarithmic scaling are performed to enhance the relative 
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differences between the values in the DNB data aggregates and to address the 

skewness of the DNB observations toward the very few high-intensity 

detections.  After scaling, the DNB radiance data undergo Wiener and Median 

filtering. The Wiener filter is used to reduce noise (Chen et al., 2006) in the 

observation data across the swath corresponding to the 6-minute granule. The 

median filter is employed to de-spike the DNB radiance data. This filter 

operates on a 3x3 pixel neighborhood, arranging the pixels in numerical order 

replacing the original value with the fifth position as the new value (Singh et 

al., 2011).  

 

The filtered data is then subtracted from the original DNB radiance. 

Afterward, all pixels with values lower than 0.035 after subtraction are 

discarded. The purpose of this subtraction is to emphasize the local maxima 

within clusters of spikes, as a lit boat appears as a single spot in the radiance 

data. The difference between this spot and other points in the cluster should 

be significant. The threshold of 0.035 was determined through multiple trials 

to effectively remove the clustered spots in the radiance data. 

 

Following the subtraction, the spike height, or radiance relative to adjacent 

pixels, is measured as calculated using Equation 1. 

 

                               𝑠 =  
2𝑟𝑖−(𝑟𝑖−1+𝑟𝑖+1)

2𝑟𝑖
                            (1)         

 

Where, 𝑠 represents the relative height of the radiance of a pixel 𝑟𝑖 against 

the two adjacent pixels, 𝑟𝑖−1 and 𝑟𝑖+1. The value of 𝑠 provides insight into 

the local difference between a spike to its proximity.  

 

The measurement of the relative height of spikes allows the use of a threshold 

s = 0.75 to separate the strong boat detections from the weaker ones. Also, 

pixels with s > 0.995 and radiance of more than 1000 nanowatts are 

considered ionospheric discharges and discarded in the detection. 

 

Radiances affected by clouds often exhibit some degree of blur. Quantifying 

this blur can aid in classifying spikes for boat detection. The sharpness 

measurement algorithm adopted in this study is the S3 mapping, which 

combines both the spectral and spatial sharpness measurements (Vu and 

Chandler, 2009). The same parameter configuration was applied, including a 

block size of 32, an overlap of 24 pixels, and a slope of 0.5. The threshold 

between blurry detections (QF3) and clear detections (QF1 or QF2) is set at a 

sharpness index of 0.4. 
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2.3 Lightning Detection  

 

In addition to clouds, the DNB observations can also be affected by lightning 

flashes. These flashes are abrupt and can be detected simultaneously by the 16 

detectors in the VIIRS instrument. The lightning detection method used in this 

study takes advantage of this and uses the radiance differences in adjacent 

scans. If the difference is substantial and persists across 24 or more pixels, 

then those detections are classified as lightning. In this study, the difference is 

considered substantial if it exceeds 10% of the higher reading between the two 

compared pixels. 

 

2.4 Validation 

 

The performance of the boat detection algorithm is cross-referenced with 

existing systems and data from the Automatic Identification System (AIS) for 

marine vessels. Figure 3 illustrates the validation workflow for the boat 

detection algorithm. Three datasets are collected for the validation process: 

the boat detections from a commercial and existing boat detection algorithm, 

AIS records, and the raw SDR file from the LAADS-DAAC archive. The 

results of the boat detections from the proposed algorithm are cross-referenced 

with those from the existing algorithm and AIS records.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Validation workflow for the boat detection algorithm using three datasets: 

commercial algorithm detections, AIS records, and raw SDR files from the 

LAADS DAAC archive 
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The Earth Observation Group (Elvidge et al., 2015) pioneered the use of 

VIIRS DNB data for detecting lit boats used in fishing. Their detection 

algorithm’s results were available for free until May 31, 2022, after which 

subsequently became accessible via subscription. The nightly data could be 

downloaded in CSV and KMZ formats viewable on Google Earth, and users 

could select results based on specific regions. AIS uses a transponder system 

designed for the exchange of information between ships, and between ship and 

shore stations. Its goals include aiding in vessel identification, target tracking, 

information simplification, information interchange, and providing new data 

to improve situational awareness. AIS is based upon a technology called “Self-

Organized Time Division Multiple Access - SOTDMA” which allows for 

seamless operation worldwide. 

 

The limited available AIS data poses a challenge for validating the results of 

the VBD algorithm, as the initially selected region of interest was the 

Philippines. Data from the Synthetic Aperture Radar and Automatic 

Identification System for Innovative Terrestrial Monitoring and Maritime 

Surveillance (SAR with AIS) Project by DOST ASTI is limited, necessitating 

the use of another region for validation. Fortunately, the National Oceanic and 

Atmospheric Administration (NOAA) has an office for coastal management 

that features the digital coast “Marine Access AIS”, which contains data about 

ocean vessel detection and identification from 2009 to the present. Since 

NOAA’s Marine Access AIS is exclusive to US coasts, the region covering 

the Gulf of Mexico was used for validation. 

 

 

 

3. Results and Discussion 

 

The generated output of the algorithm includes the coordinates of the detected 

boat detection from the DNB aggregate and the visualization file that can be 

viewed in Google Earth and GIS mapping tools. 

 

The area presented in Figure 4 is the Philippine region, bounded to the North 

at 23.9591 ̊Lat, South at -0.88792 ̊Lat, East at 138.2559̊, and West at 105.3105.̊ 

However, georeferencing the observation data requires reorientation, as the 

DNB data (Figure 4a) is transposed about the arrangement of detectors in the 

VIIRS and the direction of the scan. To validate the orientation correction, the 

Black Marble image (Figure 4b) covering the Philippines was used as a 

reference. A sample orientation-corrected DNB observation data is presented 
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in Figure 4c. The original observation data should be flipped vertically and 

rotated 90 ̊clockwise or transposed. 

 

In its initial form, the observation data is incomprehensible due to the very 

low radiance measured at nighttime (Figure 5a). To augment this, the 

observation data is multiplied by 109, translating the initial measurement from 

W/cm2/sr to nW/cm2/sr (Figure 5b). Due to the very high dynamic range of 

VIIRS (specifically 107), an 8-bit RGB image cannot render the differences 

between very low radiances. Because spikes are quite few compared to the 

low radiances that represent the bulk of the observation data, it is necessary to 

express the DNB observations on a logarithmic scale (Figure 5c). 

 

 
 

Figure 4. DNB observation data from SNPP VIIRS Granule (a); from NASA 

Black Marble via World View (b); Reoriented DNB observation data (c) 

 

 
 

Figure 5. DNB radiance in W/cm2/sr (a); DNB radiance in nW/cm2/sr (b); logarithm 

of DNB radiance. The red marks show the noise generated by aggregating 

the readings of the VIIRS detectors (c) 

 

(a) (b) (c) 

(a) (c) (b) 
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During a single scan, the detectors in the VIIRS instrument sweep out a swath 

between -56.28° and +56.28° scan angles. Because of the “bow-tie” effect 

(Seaman et al., 2015), it is necessary to perform sub-pixel aggregation in both 

the scan and track directions. There are 32 distinct modes in the DNB sample 

aggregation as a function of the scan angles. The software aggregation in the 

VIIRS instrument results in the noise present near the edge of each swath, as 

shown in Figure 5 with red marks. The best signal-to-noise ratio can be 

observed in the nadir portion of the scan. The use of the Wiener filter flattens 

this aggregation noise across the entire swath. Since lit boats appear as spikes 

in the DNB observation data, the local maxima can be identified by de-spiking 

the DNB observation data and subtracting it from the original. Then, by 

applying a threshold to the resulting difference, clustered spikes can be 

removed since lit boats appear to be individual spots in DNB observation data. 

Figures 4 and 5 show the unmasked DNB observations. However, at the start 

of feature extraction, the DNB observations were subjected to the land/water 

masks included in the Sensor Data Records (SDR) retrieved from VIIRS 

instruments. Figure 6 shows a region in the West Philippine Sea. The image 

on the left displays the Wiener- and median-filtered DNB radiance data, while 

the right is the result of the subtraction. It clearly illustrates the removal of 

clustered spikes by considering only the local maxima. 

 

 
 

Figure 6. Median and Wiener-filtered (a); difference from the original DNB 
observation data (b) 

 

Boat detection primarily considers the characteristic of lighting as spikes in 

the radiance data, which covers approximately a single pixel. Note that the 

DNB resolution per pixel is about 750 m, which can only represent a single 

spike that has a greater intensity than the other adjacent pixels. The intuition 

for quantifying the height of a spike relative to adjacent ones is that if the 

subject pixel represents a lit boat, the average intensity of adjacent pixels is 

(a) (b) 
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significantly less than that of the subject pixel. However, if the subject pixel’s 

intensity is almost the same as the average of the adjacent pixels, and their 

intensity measures greater than 1 milliwatt, the subject pixel is considered an 

ionospheric discharge and is discarded from the boat detections.   

 

Measuring the attributes of a spike relative to its surroundings allows for the 

classification of that radiance into categories of boat detection. Figure 7 

presents the relative height of spikes used to separate strong boat detections 

from weaker ones. 

 

 
 

Figure 7. Relative height of spikes used to distinguish strong boat detections from 

weaker ones. 

 

Clouds affect the radiances of lit boats seen from space. Fortunately, sharpness 

measurements can quantify the blur incurred in the radiances detected. By 

considering both spatial and spectral sharpness of the image derived from the 

DNB observations, the blur can be removed, emphasizing the sharp pixels. 

Figure 8 shows the DNB observations with clouds present (Figure 8a) and the 

result of employing sharpness measurement (Figure 8b). 
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Figure 8. DNB radiance in nW/cm2/sr (a); the sharpness measurements emphasize 

the sharp blocks (b) 

 

During nighttime, multiple sources of light overshadow the lit boats offshore. 

These stray lights include ionospheric particles and lightning. The lightning 

detection algorithm is crucial to boat detection at night, as it helps discard the 

pixels influenced by lightning. This detection capitalizes on the fact that 

persistent occurrences can be detected simultaneously by the 16 detectors in 

the VIIRS instrument. A set of 16 simultaneous readings is referred to as a 

segment in this paper. A difference of more than 0.1 log (DNB) between 

adjacent segments, along with persistence across 24 pixels or more, is 

considered lightning.  In Figure 9, the detected lightning appears as a strip of 

light, which is discarded in the classification of the boat detections. 

 

 
 

Figure 9. Lightning creates a white strip with exactly 16 lines in width, in the DNB 
radiance image (a); the pixels influenced by lightning are discarded in the 
boat detection (b) 

 

The results of filtering, sharpness mapping, lightning detection, and relative 

height measurements are used to classify the radiances into different classes 

[X,Y] [918 1148] 
Index 0.580545 
[R,G,B] [0.580392 0.580392 0.580392] 
 

[X,Y] [918 1148] 
Index 0 
[R,G,B] [0 0 0] 
 

(a) (b) 

(a) (b) 
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of detection from strong to weak, lightning or ionospheric particle discharge, 

and blurry detections. 

 

The results of the boat detection algorithm are cross-referenced to the existing 

boat detection system (Elvidge et al., 2015) and the data from the Automatic 

Identification Systems (AIS) used in marine vessel monitoring. The detection 

performance of the proposed algorithm is measured based on its ability to 

estimate the precise location of each identified boat. However, the AIS dataset 

includes many boats, including non-lit boats and non-fishing vessels, resulting 

in a significantly higher missing alarm rate than would be expected in practice, 

leading to an impractical recall rate (R). As a result, when evaluating the 

detection findings using AIS data, only the precision (P) is taken into account. 

 

The limited availability of AIS data poses a challenge for validating the results 

of the VBD algorithm, since there is no comprehensive AIS implementation 

in the Philippines at the time of the study. To address this, data from Marine 

Access AIS provided by the National Oceanic and Atmospheric 

Administration (NOAA) covering the Gulf of Mexico was used for validation. 

The highest precision obtained when comparing the proposed algorithm to the 

AIS data from the Gulf of Mexico is 71.76%. However, this precision is quite 

close to that of the existing boat detection algorithm, which achieves a 

precision rate of 75.06% when compared with the same AIS data. Figure 10 

presents a sample visualization of the detections from the existing algorithm 

(Figure 10a) and the proposed (Figure 10c), along with the boat listings from 

the AIS data.  

 

The developed boat detection algorithm was implemented to scan Philippine 

waters. Figure 11 provides a sample of the detections exported to the Google 

Earth browser. Each boat is represented by a blue sailing ship icon with 

corresponding coordinates labeled. Every observed vessel includes a 

description with the date it was spotted, its precise coordinates, and its fishery 

management area (FMA). As of May 31, 2022, 288 vessels were traveling 

within Philippine territorial waters. The highest concentration of fishing boats 

was found in the waters surrounding the Zamboanga peninsula in Western 

Mindanao, the Philippines, and the Kalayaan Group of Islands in the West 

Philippine Sea. 
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Figure 10. Visualization of the existing boat detection (Elvidge et al., 2015) (a); 
the data from Marine Access AIS(b); and the proposed algorithm (c) 

 

 
 

Figure 11. Implementation of the boat detection algorithm within the Philippine 

  Exclusive Economic Zone (EEZ). 

 

The proposed boat detection algorithm is still under development for its 

potential application in promoting sustainable fishing. The local capacity for 

boat detection provides temporal data from the aggregation of detections over 

a certain period, which can reveal the behavior and density of fishing 

activities. This information on fishing efforts can assist local authorities in 

identifying overfished regions and recommending other fishing areas to 

(a) (b) (c) 
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fisherfolks and commercial fishermen. Moreover, in the absence of an 

Automatic Identification System (AIS), the results of the boat detection 

algorithm can provide invaluable insights into the frequency of fishing 

activities occurring in Philippine waters over time.  

 

 

4. Conclusion and Recommendation 

 

In the absence of an Automatic Identification System (AIS), the locally 

developed boat detection algorithm is introduced. The fishing boat detection 

algorithm developed in this study performs on par with existing systems and 

is the first of its kind implemented locally. The system offers several inherent 

advantages. First, the detections results are written in .csv and .kml formats, 

which can be viewed in any geographic information system software such as 

Google Earth, QGIS, etc. With such a system integrated into the local 

monitoring efforts, there will be enhanced flexibility that authorities can tailor 

to the community's needs. Ultimately, it complements the efforts of both local 

and global agencies in monitoring and educating the community on the 

responsible utilization of marine resources.  

 

In future work, a localized validation study can be performed using a 

complementary localized AIS to strengthen the validity of the detection in 

Philippine waters. Additionally, the results of the lit boat detection system will 

be aggregated across year-long monitoring to identify the fishing behavior, 

which can help identify the overfished areas and recommend underfished 

regions. 
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