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Abstract 
 

The importance of day-ahead load forecasting cannot be overstated. Electricity load 

forecasting is highly important because it allows electric distribution utilities to 

increase their transmission efficiency and their revenues, increase the reliability of 

power supply, and correct decisions for future developments. In this paper, day-ahead 

load forecasting was studied using multivariate time series analysis. Traditional 

forecasting method such as seasonal autoregressive integrated moving average 

(SARIMA) was used. Machine learning algorithms such as Feed Forward Neural 

Network (FFNN) and Long Short Term Memory (LSTM) were also utilized to 

determine their applicability to short-term load forecasting. For SARIMA, only 

historical hourly load was needed while FFNN and LSTM required the addition of 

temperature data, hour of the day and day of the week, special events and previous 

hour load. In the prediction, FFNN and LSTM performed better with mean absolute 

percentage error (MAPE) of 1.80 and 1.75%, respectively, compared with SARIMA 

with a MAPE of 4.48%.  The study demonstrated that machine learning like FFNN and 

LSTM outperformed the traditional SARIMA models, highlighting their effectiveness 

in applications such as short-term load forecasting in time series prediction.  
 

Keywords: ARIMA, feed-forward neural network, load forecasting, LSTM, 

  multivariate time series  

 

 

1. Introduction 

 

Because of the important role the electric power system plays in a country’s 

economy, both long-term and short-term reliability and improvement are 

given significant emphasis. Thus, electricity demand forecasting is of crucial 

importance for the proper operation, maintenance and planning of the electric 

power system (Dedinec et al., 2016; Hong et al., 2016; Guo et al., 2018). 

Electricity suppliers encounter various obstacles while providing electricity to 
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their clients daily (Clements et al., 2015). Anticipating electricity usage can 

lower the initial expenses of constructing power-generating stations and 

minimize the risks of unstable operations, fluctuating demand and equipment 

failures. Accurately predicting electricity demand is of utmost importance for 

ensuring reliable power delivery, strategic planning and efficient energy 

management. However, the dynamic nature of power generation and 

consumption has made the task of forecasting electricity demand increasingly 

intricate. Precise energy forecasts are essential for effective planning and 

decision-making within the energy system. Nevertheless, the challenge lies in 

predicting energy consumption accurately due to the presence of complex 

patterns (Baliyan et al., 2015; Nichiforov et al., 2017; Chodakowska et al., 

2021; Sankalpa et al., 2022). Various methods, including linear regression, 

exponential smoothing, Kalman filtering and neural networks have been 

developed to deal with forecasting issues for complex demand patterns. The 

active power generation of the system needs to keep pace with its active power 

load, and load forecasting during hourly changes is crucial (El-Hawary, 2017; 

Yukseltan et al., 2020; Chen et al., 2022). 

  

Load forecasting is divided into short-term, medium-term and long-term. 

Short-term load forecasting ranges from an hour to a week while medium-

term ranges from a week to a year. Long-term forecasting is for over a year 

and is used by electric utilities for network expansion. Short-term load 

forecasting is crucial to power system operations such as unit commitment and 

power generation coordination. It is challenging due to deregulation and the 

penetration of renewable energy sources which makes predicting the load 

more complex (Gonen, 2007; Almeshaiei and Soltan, 2011). Many studies 

were conducted for short-term electricity demand forecasting. Shilpa and 

Sheshadri (2017) used an autoregressive integrated moving average (ARIMA) 

model with stochastic time series analysis and achieved a mean absolute 

percentage error (MAPE) of 4.46%, while Nie et al. (2012) used a hybrid 

ARIMA and support vector machine (SVM) model to correct deviations from 

the former forecasting with an estimated MAPE of 2.6%. Tarsitano and 

Amerise (2017) used SARIMAX with backward stepwise regression to 

predict the next day’s load and achieved a root mean squared percent error of 

1.32-2.80% for one-day ahead and 2.27-3.54% for nine-day ahead predictions. 

All studies found that past loads and calendar effects greatly affect forecasting 

performance.  In the study conducted by Hong et al. (2016), a hierarchical 

load forecasting approach was proposed for the Global Energy Forecasting 

Competition 2012. The authors used multivariate time series analysis and a 

hierarchical clustering algorithm to model the electricity demand for 370 
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regions.  In contrast, traditional methods such as ARIMA and ARMA may not 

be suitable for short-term forecasting because they cannot adapt to 

environmental factors such as weather temperatures and holidays. 

 

In electricity demand forecasting, machine learning models have been recently 

used as they offer advantages from their ability to capture complex patterns in 

data, adapt to changing conditions and provide accurate and timely predictions 

(Briones et al., 2019; Shapi et al., 2021; Weeraddana et al., 2021; Zhu et al., 

2021). Machine learning models have been applied to short-term load 

forecasting, with comparative studies showing that artificial neural network 

(ANN) and model based on support vector machine (SVM) performed well 

(Oğcu et al., 2012). The ANN model learns the relationship between input and 

output criteria using training data and has the advantage of being able to learn 

non-linearities in the data. Muzaffar and Afshari (2019) concluded that a long 

short-term memory (LSTM) model performed better than ARMA, SARIMA 

and ARMAX models in predicting electrical load using hourly observations 

and exogenous variables such as temperature, humidity and wind speed. The 

LSTM achieved a MAPE of 1.522% for a 24-hour prediction horizon. Alden 

et al. (2020) explored the use of LSTM neural networks for forecasting 

electricity usage in smart homes. Their paper suggested a two-stage 

forecasting approach where the LSTM model first predicted the next 24-hour 

electricity usage based on historical data, and then adjusted the forecast using 

real-time weather and occupancy data. The proposed approach was evaluated 

using a dataset of smart home electricity usage and compared with other 

commonly used methods. The results showed that the LSTM model 

outperformed other methods in terms of accuracy making it a promising 

method for smart home electricity usage forecasting. The paper also discussed 

the potential applications of the proposed approach in demand response and 

energy management systems. 

 

The Philippines’ electric power industry became competitive with the 

establishment of the Wholesale Electricity Spot Market (WESM). Accurate 

electricity demand forecasting is crucial to avoid wasting energy or incurring 

additional costs. This study aimed to develop a short-term forecasting model 

using historical data, weather data and other variables through exploratory 

data analysis, built and compared statistical and machine learning models, and 

tested and evaluated the developed models for day-ahead forecasts. 
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2. Methodology 

 

2.1 Data Gathering 

 

Figure 1 illustrates the flowchart methodology used in this research. The 

historical hourly electricity demand was collected from an electrical substation 

that serves four feeders, with the hourly demand of each feeder summed to 

represent the substation’s total hourly load. The historical weather data was 

obtained from a weather station in the same area as the substation ensuring 

that the temperature data is reflective of the region. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 
 

Figure 1. Methodology flowchart 

 

The researcher employed a web scraping script in Python to extract the 

necessary weather data from a public website (Weather Underground, n.d.).  

 

2.2 Exploratory Data Analysis 

 

The dataset was then analyzed visually, searching for significant patterns such 

as correlated features, treatment of missing data and outliers, if any. 

Exploratory data analysis (EDA) was conducted using the Pandas package in 

Python to seek insights from the data through in-depth analysis. Using the 

historical hourly load demand and weather data, predictors were generated and 
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Data preparation 
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Validation and testing of models 

Model evaluation and comparison 
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then subjected to correlation analysis to determine their significance. This 

analysis considers the impact of special days and events such as holidays and 

Christmas Day. The correlation analysis quantifies the relationship between 

two variables using the correlation coefficient, which ranges from -1 to 1. A 

correlation coefficient of “0” indicates no relationship between the variables. 

The Pearson correlation coefficient, the most common measure of correlation 

(Schober and Schwarte, 2018), was used in this study, which is defined by 

Equation 1 where r is the correlation coefficient, xi is the observations of 

variable x, yi is the observations of variable y, x̅ is the mean of observations of 

x, and y̅ is the mean of observations of y. Only variables with a strong 

correlation (r > 0.70) with the hourly electrical load were considered in this 

study.  

 

 r=
∑ (xi – x̅)(y

i
 – y̅)  

√∑(xi –x̅)2 ∑(y
i
 –y̅)

2
                                            (1)         

 

2.3 Forecasting Model Building and Fitting 

 

For the statistical models, the study used the SARIMA model while for the 

machine learning models, the FFNN and LSTM were utilized. 

 

2.3.1 Seasonal ARIMA Time Series Forecasting 

 

A seasonal autoregressive integrated moving average model of the form 

SARIMA(p, d, q) × (P, D, Q)m is a statistical analysis approach that employs 

time series data to forecast future trends or to better comprehend the current 

data collection. This method is used for univariate time series forecasting. This 

is an extension of the ARIMA model that incorporates seasonal effects. The 

formula for the seasonal ARIMA model (Chang et al., 2012) is shown in 

Equation 2. 

 

(1 – ϕ
1
B–…–ϕ

P
Bp)(1–Φ1BS– …–ΦPBPS)(1–B)d(1–BS)

D
y

t
=(1+θ1B+…+θqBq)(1+Θ1B

S
+…+ΘQBQS)ϵt  (2) 

 

where p is the number of autoregressive terms, d is the number of non-seasonal 

differences, q is the number of moving average terms, P is the number of 

seasonal autoregressive terms, D is the number of seasonal differences, Q is 

the number of seasonal moving average terms, S is the number of time periods 

in a season and B is the backshift operator.  For SARIMA, the first step is to 

determine if the time series is stationary. To do this, the researcher used the 

Augmented Dickey-Fuller Test and Kwiatkowski-Phillips-Schmidt-Shin 
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(KPSS) test to check the stationarity of the time series. Once the stationarity 

is met, the next step is to fit a SARIMA(p,d,q) × (P,D,Q)m. In determining the 

best parameters, the Akaike Information Criterion (AIC) is the basis. The 

combination of the parameters with the lowest AIC value is chosen. The model 

was used to predict 24 h, and forecasting accuracy was measured.  

 

2.3.2 Feed Forward Neural Network 

 

The dataset that is fed to the feed-forward neural network (FFNN) is 

determined from the correlation analysis. Once the data is ready, it will first 

undergo normalization. Normalization is needed since machine learning 

models like FFNN are sensitive to the magnitude of the input data. For 

example, the temperature column is in the range of 18.6-36 °C while other 

exogenous variables like holidays are 0 or 1. This will significantly affect the 

forecasting ability of the model as larger weights will be assigned to large 

numbers. Once the normalization is done, the data will be split into training, 

validation and testing. The data split is 80, 10 and 10% for training, validation, 

and testing, respectively (Chi et al., 2022).  This is to ensure that the model is 

doing good in forecasting and there is no over-fitting.  

 

Several model architectures will be made and tested until a forecasting error 

has a MAPE of less than 5%. Once the best model is determined, it will then 

be tested to forecast 24 h and will be evaluated. The neural network that will 

be used is similar to Figure 2. Yt is the load time series, and xt is the input layer 

that is a vector consisting of other time series and exogenous variables that 

influence the target time series which is the load. The number of inputs 

depends on the output of the correlation analysis. The number of neurons in 

each layer of the hidden layers will be updated depending on the MAPE until 

a final network structure is achieved. Since this is a regression problem, the 

training of the neural network will be structured as a supervised learning 

problem where the target variable is the hourly load, and the input variables 

are the temperature data and the exogenous variables. One way to ensure that 

the training model achieves the same level of accuracy is to use a fixed random 

seed when initializing the weights of the neural network. This ensures that the 

same initial weights are used for each training process and thus the same 

training process is repeated every time. Additionally, using early stopping 

techniques and monitoring the validation loss can help prevent overfitting and 

ensure that the model generalizes well to unseen data. 
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Figure 2. Feed forward neural network 

 

2.3.3 Long Short Term Memory 

 

The input to the Long Short Term Memory (LSTM) model is 3-dimensional 

which includes a number of samples, time steps and a number of features. The 

time steps are the number of previous observations that will be used to predict 

a single time step into the future and the number of features refers to the hourly 

load, temperature and all exogenous variables including the target variable. 

Data will undergo normalization since machine learning models are sensitive 

to the magnitude of inputs.  Splitting the dataset into training, validation, and 

testing comes next to normalization. The training dataset is then used to train 

the LSTM model, along with the validation data set to see if the model is 

performing well.  A dropout layer is added to the model to prevent overfitting.  

Lastly, when the model is done with the training and validation, the model is 

then used to forecast 24 h using the test data set. The forecast will be compared 

with the actual value of the target variable and forecast error will be evaluated. 

 

2.3.4 Determination of Hyperparameters 

 

The selection of hyperparameters such as learning rate, training technique, and 

momentum is a crucial aspect of developing an accurate and effective model. 

In this study, a systematic approach was used to choose these hyperparameters 

based on established best practices and prior research. For the learning rate, a 

range of values is typically explored to determine the optimal value that results 

in the lowest training error and avoids overfitting. This study used a grid 

search approach to tune the learning rate hyperparameter. A range of values is 

Yt 

Xt 
Input units: 7 

Activation: relu 

Units: 64(+54 more) 

Activation: relu 

Units: 64(+54 more) 

Activation: relu 

Output units: 1 

Activation: linear 
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selected, and the model is trained with each learning rate value. The 

performance of each model is then evaluated, and the learning rate that 

produces the best results is chosen. In this study, a learning rate of 0.001 gave 

the best result. For the training technique, different techniques can be used 

depending on the nature of the data and the desired outcome. This study used 

the Adam optimizer (Hassan et al., 2023).  

 

2.4 Validation and Testing of Models 

 

In this phase, the performance of the fitted models was evaluated by testing 

them on a validation dataset. This phase ensured that the models were not 

overfitting the data and that they were capable of generalizing to new data. 

 

2.5 Measure of Forecasting Accuracy 

 

The accuracy of a model is measured by how such a model performs with a 

new set of data that was not used in building the forecasting model. In this 

case, the data will be split into training data (used to build the model) and test 

data (used to test the model). The training data is utilized to estimate the 

parameters of the forecasting models while the test data will be used to 

measure the performance of the model.  Forecasting models used in the study 

were compared through forecast performance.  The measure that will be used 

is the Mean Absolute Percentage Error (MAPE). The MAPE is given by 

Equation 3. 

 

 MAPE = 
100%

n
∑ |

At – Ft

At
|n

t=1                                       (3)         

 

where At is the actual value of the load, Ft is the forecasted value of the load, 

and n is the number of times the summation iteration happens. 

 

 

 

3. Results and Discussion 

 

3.1 Dataset 

 

The dataset used in this study consisted of 17,472 hourly observations from 

October 3, 2017 to September 9, 2019.  This included information on hourly 

temperature and dew point in degrees Celsius, solar irradiance in W/m2, and 

electrical load in megawatts (MW). 
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The historical hourly load observations used in this study are plotted in Figure 

3. The load was lower on weekends. Holidays also influenced the daily load 

profile as can be seen in the plot (red line). August 27, 2018, is a regular 

holiday (National Heroes’ Day), which is Monday, and August 28, 2018 

(Tuesday) is a special (non-working) public holiday.  It can also be seen that 

it exhibited daily and weekly seasonality.  The average daily load profile in 

this data set is shown in Figure 4.  The peak load occurred at 2 PM which was 

about 22.5 MW, and the lowest was at 4 AM, which was about 4 MW.  It can 

be seen that the time of the day influenced the daily load profile. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Historical hourly load profile showing daily seasonality 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Average daily load profile showing peak demand in the afternoon 

 

The hourly temperature data is plotted in Figure 5.  The minimum temperature 

was 18.6 °C, and the maximum temperature was 36.6 °C. The average 

temperature was 27.42 °C. 
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Figure 5. Hourly temperature data from October 2017 to October 2019 

 

3.2 Correlation Analysis, Stationarity and Grainger Causality Test 

 

The correlation analysis conducted resulted in a high correlation of the 

temperature to the load demand with 0.79 (Table 1). The other variables (dew 

point, humidity, wind direction, speed, gust, pressure, precip.rate, 

precip.accum, UV and solar) in the dataset were discarded since the 

correlation coefficient was less than 0.5. The temperature column, as well as 

the load demand column, underwent a stationarity test, and these time series 

were stationary which is a requirement for classical time series forecasting 

algorithms such as seasonal ARIMA. Table 2 shows the result of the 

stationarity test, and both time series had a P-value of 0.05 making both time 

series stationary. The result of the Grainger Causality test in Figure 6 showed 

that the P-value for TemperatuteC_x and TotalLoad_y was 0.0, the null 

hypothesis was rejected; it can be concluded that temperature influenced the 

load demand. 

 

Table 1. Correlation coefficients of the other variables with respect to the load 

demand 

 

 Variables Load demand 

TemperatureC 0.78 

Dew point 0.69 

Humidity -0.10 

Wind Direction -0.04 

Speed 0.49 

Gust 0.52 

Pressure -0.10 

Precip.Rate 0.02 

Precip.Accum 0.01 

UV 0.51 

Solar 0.53 
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Table 2. Stationarity test result for the temperature and the total load time series 

 

Variables 
Augmented Dickey-Fuller (ADF) test                                                             

P-value 

Temperature 0.0000 
Load demand 0.0000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Grainger Causality matrix of the temperature and the total load demand 

 

3.3 Determination of Exogenous Inputs 

 

The daily electricity load profile was influenced by factors that include the 

temperature of the day, the hour of the day, the day of the week, whether it 

was a weekend or weekday, the month of the year, whether it was a holiday 

or not, special events, etc.  It was important to determine how these factors 

influenced the electricity load to develop a forecasting model with high 

accuracy. The results of feature engineering conducted in this study are 

discussed in this section. 

 

3.3.1 Temperature and Electricity Load 

 

A plot of the temperature and the electrical load can be seen in Figure 7.  The 

demand was lower at lower temperatures and significantly increased as the 

temperature increased. It can be noted that these were due to air-conditioning 
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loads where the temperature inside commercial and residential buildings must 

be maintained at a cooler temperature throughout the day.   

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Relationship between temperature and electrical load indicating a positive 

correlation between the two variables  

 

3.3.2 Load Profile with Respect to the Day 

 

A box plot is shown in Figure 8 for the weekly load profile.  It was important 

in 24-h ahead forecasting to know the day of the week that the load had to be 

predicted. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

The boxes represent the interquartile range (IQR) of the data, with the central line representing the median value. 

 

Figure 8. Distribution of hourly load data for each day of the week 

 

In the plot, the load was higher starting from Monday (1) which peaked on 

Friday (2) and was lower on weekends.  This feature was important since there 
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was a significant difference in the load between the days of the week.  As can 

be seen in Figure 9, there was a difference in the load profile during weekdays 

compared with weekends.  Non-working days corresponding to holidays and 

special events also affected the load profile. As shown in Figure 10, there was 

a significant decrease in the load profile during holidays. It can also be noted 

that the load profile might be different from the other electrical substations.  It 

might be that there is no decrease in load if the customers are industrial and 

manufacturing plants where there is operation even on holidays. All these 

features are considered in the building of the forecasting model since all of 

these features affect the behavior of the load profile. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Comparison of average hourly load profile between weekdays and weekends 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 10. Comparison of average hourly load profile between holiday and non-holiday 
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3.4 Comparison of the Results 

 

The hourly data from the first observation up to September 29 was used for 

the training of all the models. All the models were used to forecast 24 h, which 

are the 24-h observations of September 30.  The result of the forecast of the 

three models is plotted in Figure 11.   

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 11. Comparison of the forecast results obtained from three models, namely 

SARIMA, FFNN, and LSTM 

 

The 24-h ahead forecast is shown in Table 3, and the mean absolute percentage 

error of each model is shown in Table 4. The SARIMA model performed well 

with MAPE of 4.48% but unlike the machine learning models, it was not able 

to incorporate the effects of external factors such as weather and social events. 

On the other hand, FFNN and LSTM performed well with a MAPE of 1.80 

and 1.75%, respectively. 
 

Table 3. Comparison of forecasted values of the SARIMA, FFNN and LSTM models 

for a weekday 

 

Sep-30 Actual SARIMA FFNN LSTM 

12:00 AM 10.76 10.64 10.62 10.56 

1:00 AM 10.11 9.91 9.88 10.28 

2:00 AM 9.63 9.40 9.45 9.85 

3:00 AM 9.18 8.98 9.15 9.31 

4:00 AM 9.06 8.79 9.01 8.89 

5:00 AM 9.33 9.14 9.26 9.62 

Hour 
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6:00 AM 9.92 9.69 9.87 9.97 

7:00 AM 10.51 10.09 10.71 10.49 

8:00 AM 14.76 13.95 14.09 14.09 

9:00 AM 20.59 19.20 20.37 20.31 

10:00 AM 25.29 23.62 24.86 25.14 

11:00 AM 26.32 24.77 26.92 26.06 

12:00 PM 26.04 24.50 26.19 25.87 

1:00 PM 26.36 24.64 26.05 25.63 

2:00 PM 26.85 25.60 26.62 26.70 

3:00 PM 26.69 25.42 26.87 26.37 

4:00 PM 26.57 24.83 26.26 25.94 

5:00 PM 25.23 23.73 25.65 25.12 

6:00 PM 24.44 22.40 23.87 23.75 

7:00 PM 21.58 20.60 22.50 22.12 

8:00 PM 18.92 18.23 19.35 19.16 

9:00 PM 17.25 16.56 16.73 16.79 

10:00 PM 14.52 14.00 15.02 14.75 

11:00 PM 12.97 12.24 12.61 12.59 

 
Table 4. Mean absolute percent error of the three models forecasting a weekday 

 

Model MAPE (%) 

Seasonal ARIMA (SARIMA) 4.48 

Feed-Forward Neural Network (FFNN) 1.80 

Long Short Term Memory (LSTM) 1.75 

 

3.5 Models Forecasting Performance for Holiday 

 

Models were tested to forecast the 24-h electrical load demand for a holiday.  

Specifically, the researchers chose August 28, 2019, which was a local 

holiday; it was a weekday (Thursday). The result is shown in Figure 12.   

 

 

 

 

Table 3 continued. 
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Figure 12. Performance of the three models for a holiday 
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It can be seen that the SARIMA model and VAR model were not able to 

forecast the load for the holiday because these models only used their past 

values to predict their future values. For the machine learning models FFNN 

and LSTM, both models forecasted accurately the electrical load demand for 

a holiday. The hourly forecast is shown in Table 5, and the errors are in Table 

6. 

 
Table 5. Comparison of forecasted values of the SARIMA, FFNN and LSTM models 

for a holiday 

 

Aug-29 Actual SARIMA FFNN LSTM 

12:00 AM 10.68 10.41 11.19 10.41 

1:00 AM 9.95 9.69 10.98 10.12 

2:00 AM 9.48 9.23 10.52 9.66 

3:00 AM 9.07 8.83 10.30 9.06 

4:00 AM 9.05 8.64 10.40 8.80 

5:00 AM 9.08 8.98 10.73 8.86 

6:00 AM 9.55 9.51 11.03 9.06 

7:00 AM 10.20 9.90 11.73 9.88 

8:00 AM 12.92 13.58 15.68 12.17 

9:00 AM 16.26 18.55 21.51 16.43 

10:00 AM 18.77 22.52 25.88 19.17 

11:00 AM 21.27 23.84 27.11 19.66 

12:00 PM 21.02 23.73 26.84 21.13 

1:00 PM 20.84 23.81 26.94 20.99 

2:00 PM 21.63 24.75 27.46 20.62 

3:00 PM 21.54 24.52 27.00 21.25 

4:00 PM 21.34 24.19 26.38 21.10 

5:00 PM 20.77 23.03 24.99 20.65 

6:00 PM 21.07 21.90 23.46 19.78 

7:00 PM 19.99 20.24 21.76 19.53 

8:00 PM 18.05 17.92 19.62 18.04 

9:00 PM 16.22 16.25 17.63 16.01 

10:00 PM 13.93 13.64 15.15 14.11 

11:00 PM 12.55 11.94 13.13 12.39 
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Table 6. Mean absolute percent error of the three models forecasting for a holiday 

 

Model MAPE (%) 

Seasonal ARIMA (SARIMA) 6.81 

Feed-Forward Neural Network (FFNN) 2.08 

Long Short Term Memory (LSTM) 2.39 

 

 

 

4. Conclusion and Recommendation 

 

The crucial role of day-ahead load forecasting is of great importance. The 

SARIMA model did not consider the effects of other factors such as 

temperature in the forecasting. Such is the case for univariate time series 

analysis.  It was shown that there was a difference in forecasting error, and 

there was an improved accuracy when using multivariate time series analysis, 

which included temperature and exogenous variables such as time, weather 

conditions and special events in forecasting the load pattern 24 h ahead.  

FFNN and LSTM performed better in the prediction with a MAPE of 1.80 and 

1.75%, respectively, compared with the SARIMA (MAPE: 4.48%) and was 

therefore applicable to short-term load forecasting. The SARIMA model still 

needs to be studied further given factors such as time, weather conditions, and 

special events will be used as predictors of the electrical load. Given the ability 

of machine learning algorithms to learn the non-linear behavior of the 

electrical load, several neural network structures can be tested to see if 

accuracy is improved. The effects of additional variables such as hourly 

electricity price must also be studied to determine the influence on the hourly 

electrical load for better foresting. The applicability of such a forecasting 

model in very short-term load forecasting which includes very short time 

horizons (5-min intervals) must also be investigated. 
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