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Abstract

This study proposed a three-parameter model called the gamma inverse paralogistic
(GiPL) distribution model. The probability density and cumulative distribution
functions were presented together with the quantile function. Properties such as
measures of reliability, the k™ raw moment and moment-generating function, partial
moments, order statistics, log-likelihood functions for maximum likelihood
estimations, Renyi entropy and the ordering of random variables were provided. To
test the performance of the parameters, a simulation study was conducted. The
simulation result was assessed using the mean, bias and root mean square errors.
Finally, the data set on the number of COVID-19-infected individuals per age was used
to apply the model and compared with various recently developed distribution models.
Results showed the superiority of the GiPL distribution model over these models.

Keywords: gamma family, inverse paralogistic, real-data application, simulation study,
statistical properties

1. Introduction

Many distributions were developed because of their wide range of applications
to analyze various data sets in finance, actuarial science, hydrology, etc. These
recent developments aim to build a distribution model that adequately and
suitably captures the descriptive statistical properties of a data set.
Furthermore, the model is capable to characterize its mean, median, mode,
skewness, kurtosis and variability to control any of its shape, location and
scale properties. Moreover, these recent developments add knowledge to the
growing field of probability theory, particularly the use of probability models
in data science and analytics, as these give more capability in the distribution
modeling of data sets with sophisticated complexities.
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Generalized distribution models have become evident in literature because of
their capability to make new characterizations of the data set and where the
models are shown to be suitable and efficient for that purpose. Some recently
developed models are as follows: extended generalized Lindley distribution
(Kantar et al., 2018), generalized log-Moyal distribution (Bhati and Ravi,
2018), s generalized normal distribution (Cordeiro et al., 2019), Marshall-
Olkin Kappa distribution (Javed et al., 2019), Marshall-Olkin length biased
exponential distribution (ul Haq et al., 2019), odd log-logistic Burr X
distribution (Usman et al., 2019), power Burr type X distribution (Usman and
Ilyas, 2020), Kumaraswamy generalized Kappa distribution (Nawaz et al.,
2020), Marshall-Olkin extended inverted Kumaraswamy distribution (Usman
and ul Hag, 2020), Marshall-Olkin power Lomax distribution (ul Haget al.,
2020) and Marshall-Olkin inverted Nadarajah-Haghighi distribution (Raffiq
et al., 2020).

In this study, a three-parameter distribution called the gamma inverse
paralogistic (GiPL) model was developed. The formulation was based on
generating a particular member of a gamma family using the inverse
paralogistic distribution as the base model. The two-parameter distribution
model called the inverse paralogistic model has the following respective
probability density function (Equation 1) and cumulative distribution function
(Equation 2):
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where x > 0 and t, 4 > 0 are the parameters. In the inverse paralogistic model,
A serves as the shape parameter and z is the scale parameter. The figure below
shows the plot of Equation 1 of this model.
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Figure 1. Probability density function of the inverse paralogistic distribution
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The gamma family is based on the following structure: let G(x) be the
cumulative distribution function of a random variable X with probability
density function g(x). Then, Zografos and Balakrishnan (2009) formulated the
gamma family distribution, which has the following probability density
function and cumulative density function defined by Equations 3 and 4,
respectively.

f (x,.a):ﬁ{, il - GEON ) 3)
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where a > 0 is a parameter, 77(:) is the gamma function, and for each z > 0,
y (a,z)=j e tdt
0

is the lower incomplete gamma function. As an illustration, say G and g are
the cumulative distribution and probability density functions, respectively, of
a standard normal random variable. Then, Figure 2 shows Equation 3 with a
normal distribution base model.
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Figure 2. Probability density function of a gamma family with
normal distribution base model

Some of the models available in the literature with properties developed and
with illustration for application are the following: gamma generalized Pareto
distribution (De Andrade et al., 2017) and gamma Burr XII distribution
(Guerra et al., 2017).

The development of the model was motivated by the limited available study
regarding the extension of the inverse paralogistic distribution model, which
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is classically used to model data sets that are heavy-tailed. Commonly, data
sets in hydrology, finance and actuarial science depict such behavior. In this
model, the additional parameter makes it more flexible to handle a data set
with sophisticated behavior regarding its shape and scale.

2. Methodology
2.1 Model Description

A new model called the GiPL distribution is a three-parameter model based
on the inverse paralogistic model with a family generator. By substituting
Equation 1 and Equation 2 into Equation 3, the probability density function is
defined by

N @ TN Ao
f(x,a,r,l)—m{fln |:]7|:]+(/'[x)1: :|} x[1+(/‘[x)r]r+] (5)

where x > 0. As for the cumulative distribution function, we substitute
Equation 2 into Equation 4 to get

1 |
F(x;o,t,A)= m Y {a,— In [1_ %} ]} ©

We denote a random variable X following a GiPL distribution with parameters
a, 7, and A as X ~ GiPL(a, 7, ). The new model has more control over the
shape of the distribution due to « and 4, and provides characteristics about the
spread of the distribution due to the scale parameter z. Figure 3 shows the
graph of the probability density function with varying values of the
parameters.
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Figure 3. Plots of the probability density function of GiPL(«, z, 1) with
varying parameters
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The following result shows the quantile function for a GiPL(a, 7, A)
distribution. Specifically, the quantile function Q for X at a level p, given in
Equation 7, is formulated as follows: by letting p: F(%, o, 7, 1), for a fixed x >
0 and using Equation 6, we get

. P !
S IOL K O Py
Solving for x leads to

0~ {i-et apr)y 1] v

where y~! is the inverse of the lower incomplete gamma function.

2.2 Data Preparation

In this study, GiPL(«, 7, 4) was fitted to a data set. The data set used is on the
number of COVID-19-infected individuals per age from April 2020 to March
2022 in the National Capital Region (NCR) of the Philippines — a highly
populated region in the country. The data was retrieved from the Philippine
COVID-19 Data Dashboard made by the University of the Philippines Los
Bafios Biomathematics Initiative (Biomathematics Research Cluster, 2022).

In summary, Table 1 presents some descriptive statistical measures for the
data.

Table 1. Descriptive statistical measures using the data set

Data Mean Median Mode Variance Skewness Kurtosis

COVID-19  38.536 38 32 308.5909 0.0340 3.3336

As observed, mode < median < mean for the given data set. Additionally, the
skewness was positive. Hence, the distribution of the data set was positively
skewed. Furthermore, the variance was relatively large which means that data
points tended to be far from the mean. Lastly, because the kurtosis was more
than one, the distribution of the data set was too peaked compared with the
normal curve.
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2.3 Development of Properties of GiPL(a, 1, 1)

The study provided various mathematical and statistical properties of a
random variable X ~ GiPL(e, 7, 4). Specifically, some measures of reliability
such as the survival, hazard and cumulative hazard function were derived.
These were followed by the derivation of the ki raw moment and moment-
generating function of X. Then, the partial moments were derived, and the
order statistics were formulated and presented. For the estimation of
parameters using maximum likelihood estimation, the log-likelihood function
was provided with the score vector: the vector of partial derivatives with
respect to the parameters. The information matrix was also provided here. The
stochastic, likelihood-ratio and hazard orderings were established as well.
Finally, given that the Renyi entropy has no closed form, an approximation
was formulated.

2.4 Parameter Estimation Procedure

To apply the GiPL(«, 7, ) model, calibration of the model to the given data
set was illustrated. The method used to estimate the parameters is a popular
technique known as the maximum likelihood estimation, which uses the log-
likelihood function of the distribution model and proceeds with the
maximization technique. It is uncommon for complex maximization problems
to have analytic solutions. This study employed numerical techniques using R
software (R Core Team, 2023) to estimate the parameters along with statistical
measures to verify the accuracy and adequacy of the model. The performance
of this estimation procedure was backed by the conduct of a simulation study
supported by various measures such as the mean, bias and root mean square
errors (RMSE). Lastly, the data set on the number of COVID-19-infected
individuals was used to illustrate the model.

3. Results and Discussion
3.1 Mathematical Properties
3.1.1 Reliability Analysis

Let X ~ GiPL(a, 7, £). We provide here the survival, hazard and cumulative
hazard functions of X. The survival function, denoted by S, is given by
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where y. is the upper incomplete gamma function:

+00
7. (a, z)=f e tdy
z

Figure 4 shows the graph of the survival function with varying values of the
parameters.
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Figure 4. Plot of the survival function of GiPL(«, 7, ) with varying parameters

The hazard function, denoted by h, is the ratio of the probability density and
the survival functions. It is given by

Lol )
{a ln[’ [l%l)”}

Figure 5 shows the graph of the hazard function with varying values of the
parameters.
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Figure 5. Plot of the hazard function of GiPL(«, 7, 1) with varying parameters (other
parameters are fixed at 1.5.)

65



A. E. Marasigan / Mindanao Journal of Science and Technology Vol. 21 (1) (2023) 59-80

Finally, the cumulative hazard function, denoted by ch, is the negative
logarithm of the survival function. It is given by

X)) T
ch(x;a,t,A)=In[I'(a)]-In {y+ {a,—ln [1— []Er(j)x)f] ]}} (10)
3.1.2 Moments

The k™ raw moment of X ~ GiPL(a, 7, 1) is summarized in the following
theorem:

Theorem 1 (k™ raw moment). Let ux be the k™ raw moment of X ~ GiPL(a, 1,
A). Then
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k
where z,=—- and z,=--.
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Proof.

From Equation 5, it follows that

uk = f wx"'f(x ;o T, A)dx
0
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where z,:—]f and 22:—'—;. Equations 13 and 14 follow from Newton’s
Generalization of the Binomial Theorem.

Now, let y = u(1 + s). Then (15) implies (11), as desired. =

The next theorem gives the moment-generating function M(t) of X ~ GiPL(«,
7, A) and the final expression uses the relationship (Equation 16).

M(t) = f() SOe’xf (x; a, 7, A)dx

too +o0 k
.
=f ( x,) fx; a, T, A)dx
0 k!

k=0
i i

=) —u,
k=0 k! (16)

Theorem 2 (Moment-generating function). Let X ~ GiPL(q0, 7, 1) and M(t),
t > 0, denote the moment-generating function of X. Then,

+o00 +oo +oo
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k r
wherez,=—; and =,
Proof.
The proof is similar to the proof of Theorem 1. m
3.1.3 Partial Moments
In general, if X is a random variable with continuous probability density
function f over its domain and with parameter vector 6, then the lower and

upper partial moments with respect to v are, respectively, defined by solving
the following integrals:

fv(v ) (x;0)dx  and Jﬂo(x -V (x0)dx.
0 v

The k™ lower and upper partial moments of X ~ GiPL(a, 7, 1) are summarized
in the following theorem:
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Theorem 3 (Lower and upper partial moments). Let X ~ GiPL(a, 7, 2) and
denote 4, (v) and u; (v) , respectively, the lower and upper partial moments of
X with respect to v. Then,

k  +oo +oo

y y y—la, u(l+s)]
()= ZZZ Q) I 2 j( D ey Tial (1+5)9a] (18)
J=0 r=0 s=
where 5= —In [1— [IS(V;V)]T] y,= —'% y,= —5! and g =k+y,+2y,-(j+r+s), and
k 4o +oo
k z1 12 v, Lo, u(i+s)]
e ; = Z; GO G 49

where t;= %, t,= -5 and = k+t;+2t,— (j+r+s).
T T
Proof.

Following the definition of the lower incomplete partial moment and using
Equation 5, we get

1) = fo - G A

o I o TN 207
_J;(vfx)km{fln[lf 1+(/bc)f] ]} x[1+(/lx)’]’”dx
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Equation 20 follows from the binomial expansion of (v — x)~.

Let u=—In [1—[ (e ]T] Then Equation 20 implies that

1+(x)"
J i ki
N (K '_k-jfui[_*u‘é_]ir LI
w,(v) ZO(J)VI( 1) o (I-e")7-1 XF(a)u edu (21)
=
—_ o T , . . .
where u=—In [1— [1+ . iv)’] ] By Newton’s generalization of the binomial

theorem, we get from Equation 21 that
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where y1=—k7'j, y2=—£, and q = k+y,+2y, - (j+r+s). Using the notation for

the lower incomplete gamma function, Equation 22 implies Equation 18, as
desired.

Now the upper incomplete partial moment is defined by

0= [ 0o

+o0 1
:L (x—v)kr(a){—l [

The upper incomplete partial moment given in the theorem is developed
similarly as the lower incomplete partial moment (Equation 18). m

X .

()* 2(x)°
1+(x)* ] ]} x[I+0x)7 ]

3.1.4 Order Statistics

As a preliminary, let Y, j =1, 2,...,n be the order statistics of the random
samples Y;, i =1, 2,..., n, taken from the cumulative distribution function
model F. The cumulatlve distribution function #;,(y) of the ;™ order statistic
Y is given by

b= )" () FOIFU = FOI™ (23)

k=j

Reindexing the summation from k = j to k = 0 makes the right-hand side of
Equation 23 becomes

n-j

1a0)= (1) FOIIL - FI. (24)

k=0
Observe that
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ny - n!
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where P§= (”b)/, for each integer 0 < b <a. Substituting Equation 25 to

Equation 24 and doing some algebra result to

hj,n (y):

n I J
P [ Fo) 1P [F_(y) .

Py [1-FO)] Py [SO)
To derive the cumulative distribution function of the /" order statistics of a
random variable with a desired distribution, Equation 26 is used. Now, let X;,
i=1, 2,...,n, be random samples from a GiPL (e, 7, 2) distribution, where X,
Jj=1,2,...,n are the order statistics. That is, X< X, for each / <k</<n.
Using Equation 26 with the distribution model of X ~ GiPL(«, 7, A) given in
Equation 6, we get

p:« y*{a’*l”[ [z%ﬁ)”}
Sl o -0 1

the cumulative distribution function of the j™ order statistic of X,

hin ()= (@7)

3.1.5 Log-likelihood Function

For a random variable with density f(x) and parameter vector 6, the log-
likelihood function is ¢ (6, x). Using Equation 5 and letting 8 = (o, 7, 1), we
get its log-likelihood function given by

)T
1+(x)T

2(0; x) ==l (e)+(a— 1) In {7 In [17

}+Zlnr +2(Ind—Inx) —Inx—(e+1) In[1+(Ax)7] . (28)

A method to estimate the parameters of a distribution model is by using
maximum likelihood estimation (MLE), which uses the log-likelihood
function of a random variable. Maximizing the log-likelihood function with
respect to the parameters of the distribution model establishes MLE. Given a
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data set {x;, x5,..., x,.}, the maximum likelihood estimator & is generated by
maximizing £,(6; x)=X,£(6; x,).

Now, using Equation 28, we get the score vector %, which is defined by

o _ (210 210:x) a10:) !
"\ ea " o a )

Alternatively, the estimators by MLE can be derived by solving Vg= 0.
Taking the partial derivatives, we get

o0(0:x) _—d(0) )7\
e 1@ ”"{"” [1_<1+(/1x)f> ]}
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1
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The estimates are obtained by simultaneously solving the equations

o0(0:x)  o0(Ox) - 08(0ix)
e L TR

The closed-form solution is not available; hence, a numerical method may be
employed (i.e. Simulated Annealing, Newton-Quasi, Broyden-Fletcher-
Goldfarb-Shanno method, Nelder-Mead, etc.) to approximate the estimates of
the parameters.

Now, the information matrix, denoted by J(6), is defined by

[faa@ &0(6;x) (6 %)
0o’ Oroa OAda
0(0:x) 0(0:x) (0%
000t or? 040t
oe(0:x) L0 x) (0 x)
| 20dn 510l o7

J(O)=
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For large sample sizes, the MLE parameter vector is approximately normal
with mean 6 and variance-covariance matrix which is the inverse of J. This is
helpful when constructing confidence intervals for the parameters estimated
by the MLEs.

3.1.6 Ordering

We provide here the stochastic ordering of two independent random variables
Xand Y. Let X ~ GiPL(a1, 71, 41 ) and Y ~ GiPL(a2, 72, 42). Then, define the
following types of the ordering of X and Y:

Stochastic Ordering: X is at most Y in stochastic order, denoted by X <g Y, if
Fx(x) > Fv(y), for all x, where Fx and Fy are the cumulative distribution
functions of X and Y, respectively.

Likelihood-Ratio Ordering: X is at most Y in likelihood ratio order, denoted
by X <. Y, if fx(x) / fy(x) is decreasing, for all x, where fx and fy are the
probability density function of X and Y, respectively.

Hazard Ordering: X is at most Y in hazard order, denoted by X < Y, if hx(x)
> hy(x), for all x, where hx and hy are the hazard function of X and Y,
respectively.

The following are the known series of implications for the ordering:

XY= X5, Y- X< Y.

Now, using Equation 5, we get

H&)  I(ay) G \"
lnfy(y) 7lnF(a,) +(a; -1 In {—ln [1_<I+(/1,x)’1> ]}

(ox)= \?
—(a,—1)In {— In [1— <I+(/12x)72>

‘o7 (Indy +Inx) — 13 (Inks + Inx) — (0;+1) In[1+(0yx) 7]

} +2(11’l 77 —In Tz)

(a1 In[1+(x)%]
Consequently,
1

d f,) G\ G607
E[an *((11 —1) {—ln [1—<1+(/-le);,) ]} x[]Jr()v]x)z,]rﬁ—I
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o2\ 20T
~(o=D) {* ’”[1* (_1+(zzx)fz) ]} [+ Go)R] =
TZ 3 T](Tﬁ]) (A1x)7 +T2(T2+1) (Aox)7
x X 1+ x)u X 1+(2,x)%

If a1 > o, 71 = 12, and A1 < Ay, then observe that

1. g-5 ulyth G MGG

X x  1+(x)U x 1+
X TI
(o) — 1){ ln[[ 14(:1(21‘)1] ]}
(/l X)tz
(= 1){ ln[] l+(izx) ]}

Furthermore, if 0 <t; < %ﬁ then
Ti T 7+1
DONT e (G
x[ 1+ x)e]at! 1+(x)7

oot (G NG00
> 13 (Jx) 1 <1+()v2x)’1> TX[I+ O]t

fxG)
fyO)
£, ()/f,(x) is increasing, for all x>0, which implies that f,(x)/f,(x) is
decreasing. This result and its consequences are summarized in the following
theorem.

From the three inequalities above, we conclude that — [ >(). Therefore,

Theorem 4. Let X"’GiPL((Z], (78 /1]) and Y~ GiPL((Xz, (53 /12) If oy > A,
=1 A <Ay and 0<¢ < %3 then Y<, X. Consequently, Y <, X which
implies that ¥ <¢ X.

3.2 Parameter Estimation

This section presents a simulation study to test the performance of the MLEs.
It is followed by an application of the model given a data set. Furthermore, it
is compared with various recently developed models.

3.2.1 Simulation Study

Using the quantile function given in Equation 7, sample data of sizes n = 25,
50, 75, 100, 150 and 200 were generated. The generation of the sample was
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repeated 10,000 times. Summarized in Table 2 are the mean estimates, biases
and RMSE of the parameters with parameter values (a, 7, 1) = (1.4, 2.5, 3.7)
and (a, 7, A) = (2.5, 3.5, 5.5) corresponding to the sample sizes.

It can be observed that the estimates approach the true value of the parameters
as the number of sample sizes increased. Moreover, the biases were getting
close to zero. It was also evident that the RMSEs were decreasing whenever
the sample size was increasing.

Table 2. Mean estimates, biases and RMSEs of simulations with parameter values for
sample sizes 25, 50, 75, 100, 150 and 200

(a7, 4)=(1.4,2.5,3.7) (a,7,2)=(2.5,3.5,5.5)
Sample Parameters Summary of simulation Sample Parameters Summary of simulation

size (n) Mean Bias RMSE size (n) Mean Bias RMSE
a 14179  -0.0179 0.1989 a 24891  -0.0284  0.2078

25 T 2.5882  -0.0882 0.3765 25 T 3.3214  -0.1125  0.275
A 3.7035  -0.0035 0.3966 i 5.6264  -0.0059  0.4367

a 1.4115 -0.0115 0.1425 a 2.4911 -0.0225 0.144
50 T 2.541 -0.041 0.2575 50 T 3.3205 -0.0712 0.2093
A 3.697 0.003 0.2851 A 5.6229  -0.0045  0.3522
a 1.4081  -0.0081 0.1156 a 24923  -0.0192  0.1409
75 T 2.5244 -0.0244 0.2052 75 T 3.4387 -0.0553 0.1545
i 3.6976 0.0024 0.229 A 5.6032 -0.0041 0.2657

a 1.4079 -0.0079 0.1017 a 2.4944 -0.0179 0.107
100 T 2.5164  -0.0164 0.1779 100 T 3.4553  -0.0411  0.1354
A 3.6953 0.0046 0.2 A 55871  -0.0035  0.2487
a 1.4045 -0.0046 0.0825 a 2.4969 -0.0166 0.0952

150 T 25092  -0.0092 0.1411 150 T 3.482 -0.0358  0.116

A 3.6984 0.0016 0.1628 i 55424  -0.0019  0.243
a 1.4029  -0.0029 0.0725 a 2.4993  -0.0062  0.0733
200 T 2.5078 -0.0078 0.1198 200 T 3.4827 -0.0167 0.0719
A 3.6999 0.000095 0.143 A 5.5312 -0.0004 0.1919

3.2.2 Application to Real-Time Data

This subsection shows the superiority of the GiPL(«, 7, 4) distribution among
other recently developed distribution models: generalized Log Moyal
(GlogMg, o) (Bhati and Ravi, 2018), Marshall-Olkin Kappa distribution
(MOK(a, B, 6, 0)) (Javed et al., 2019), gamma generalized normal distribution
(GNG(u, o, s, @) (Cordeiro et al., 2019), Marshall-Olkin length biased
exponential distribution MOLBE(y, f) (ul Haqg et al., 2019), Marshall-Olkin
extended inverted Kumaraswamy distribution (MOEIKZ, a, £) (Usman and ul
Haq, 2020), Marshall-Olkin power Lomax distribution MOPL(«, £, y, 4) (ul
Haq et al., 2020) and Marshall-Olkin inverted Nadarajah-Haghighi
distribution MOINH(e, B, y) (Raffig et al., 2020). These are heavy-tailed
distributions that can be used to model data sets that deviate from the normal
distribution in terms of numerous statistical properties.
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As observed in the probability-probability plot in Figure 6, there was a
significant variation over the right tail. This was expected as the statistics
presented in the previous section to describe the distribution of the data
suggested that the distribution was positively skewed and heavy-tailed
indicating the need to use a heavy-tailed distribution to model the data set.

40 60 80 100

Empirical cumulative distribution
20

-4 2 0 2 4
Theoretical cumulative distribution

Figure 6. Probability-probability plot given the COVID-19 data set

The measures for model selection used to assess the superiority of the GiPL(«,
7, 1) were log-likelihood (log-LL), Akaike Information Criterion (AIC),
corrected Akaike Information Criterion (AIC.), and Bayesian Information
Criterion (BIC). The goal was to compare models and determine a model with
the highest log-LL, and lowest AIC, AIC,, and BIC. The maxLik package in
R was employed with Nelder-Mead optimization to estimate the MLEs of the
parameters, thanks to Henningsen and Toomet (2010).

Given the data set on the number of COVID-19 infected individuals per age,
summarized in Table 3 are the estimates of the parameters of GiPL(«, 7, 1),
GlogM(u, 6), MOKa, 8, 6, 6, GGN(y, o, s, a), MOEIK(Z, o, ), MOLBE(y, ),
MOPL(«, B, y, 4) and MOINH(a, £, 7).

Furthermore, the corresponding values of log-LL, AIC, AIC,, and BIC are also
given. The GiPL(«, 7, 4) dominated all the other models considered; that is,
GiPL(a, 7, 4) had the highest log-LL and the lowest AIC, AIC. and BIC.
Therefore, GiPL(a, 7, 1) gives the best fit compared with the other models.
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Table 3. Parameter estimates and measures for model selection using the data set on
the number of individuals per age who were infected with COVID-19 in NCR,
Philippines from April 2020 to March 2022

Parameter estimation Measures for model selection

Model

(Standard error)

log-11

AIC

BIC

AIC

GiPL(a, 1, 4)

GlogM(, o)

MOK(a, S, 6, 0)

GGN(u, o, 5, a)

MOEIK(, a, B)

MOLBE(y, £)

MOPL(a. 8,7, 4)

MOINH(a, B, )

@=0.0163 (0.0004)
t=3.376
(5.4x10°)
7=10.0020
(1.6 x10™)

1=0.7494 (0.0012)
5=16.5010 (0.0356)

@=2.0098(0.0080)
B =22.9569(0.0382)
0=2.4713 (0.0131)
0=15.8070(0.1268)

a=10.14
(1.9x10%)
5=0.3444
(9.9 x10°)
£=0.5880
(9.3 x10°)
a=16.61(0.0088)

7=1.1834(0.0047)
@=1.1098 (0.0024)
P =26.4833 (0.1518)

7=2.97x10"
(1.1x10%)
$=0.0015 (0.0150)

a = 0.0064
(9.975 % 10%)
f=154.3 (0.0089)
7=19.91 (0.1169)
A=3.639 (0.0003)

o=3.8546 (0.0313)
B=1.2028 (0.0119)
y=7.2761 (0.0316)

-752122.4

-870337

-760724.9

-756556.3

-1189690

-788627.4

-863759.7

-847350.5

1504251

1740678

1521458

1513121

2379386

1577259

1727527

1694707

1504267

1740689

1521479

1513142

2379402

1577269

1727549

1694723

1504251

1740678

1521458

1513121

2379386

1577259

1727527

1694707
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In Figure 7 the COVID-19 data set histogram along with the fitted probability
density function using the estimates for GiPL(«, z, 4) in Table 4 show that
there were some small overestimation and underestimation over the left and
right tails, respectively. But despite this, a good picture of the fitted model
compared to the histogram of the data set is observed.
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Figure 7. Histogram with fitted probability density function

Figure 8 shows the empirical cumulative distribution function with fitted GiPL
cumulative distribution function using the estimates for GiPL(«, z, A) in Table
3. It provides an illustration of how adequate the GiPL(«, z, 4) is used to model
the data set in terms of cumulative distribution.
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Figure 8. Empirical distribution with fitted GiPL distribution
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In summary, Figure 9 presents the log-LL plot to illustrate the behavior of the
log-LL over the neighborhood of the two-parameter estimates having other
parameters constant.
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Figure 9. Loglikelihood plot for GiPL(«, z, 4)

4., Conclusion and Recommendation

A three-parameter distribution model called the GiPL distribution, denoted by
GiPL(a, 6, 1), was proposed. The development made use of the inverse
paralogistic model with a gamma family generator. Introduced together were
the probability density and cumulative distribution functions and quantile
functions of GiPL(«, 6, 7). Properties such as some measures for reliability
analysis, the raw moment and moment-generating function, partial moments,
order statistics, log-likelihood functions, the Renyi entropy, the stochastic,
likelihood-ratio and the hazard ordering were presented. The performance of
the parameters was studied using the MLEs. The mean estimates, biases, and
RMSEs showed that as the sample size increases, the mean estimates
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approached the true value of the parameters initially set, the biases were close
to zero, and the RMSEs relatively decreased. Finally, as the data description
implied the use of a heavy-tailed distribution model because the data set was
positively skewed and the kurtosis relatively deviated from the normal, it was
used to show the superiority of the GiPL(«, 0, 7) over the recently developed
models. Particularly, measures such as log-LL value, AIC, BIC and AIC. for
model selection suggested that GiPL(«, 6, 7) dominated the seven models used
because of having the highest log-LL and the lowest value of AIC, BIC and
AIC.. Among all these models, the MOEIK(2, «, ) was the least exceptional.
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