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Abstract 
 

This study proposed a three-parameter model called the gamma inverse paralogistic 

(GiPL) distribution model. The probability density and cumulative distribution 

functions were presented together with the quantile function. Properties such as 

measures of reliability, the kth raw moment and moment-generating function, partial 

moments, order statistics, log-likelihood functions for maximum likelihood 

estimations, Renyi entropy and the ordering of random variables were provided. To 

test the performance of the parameters, a simulation study was conducted. The 

simulation result was assessed using the mean, bias and root mean square errors. 

Finally, the data set on the number of COVID-19-infected individuals per age was used 

to apply the model and compared with various recently developed distribution models. 

Results showed the superiority of the GiPL distribution model over these models.  
 

Keywords: gamma family, inverse paralogistic, real-data application, simulation study,  

  statistical properties 

   
 

1. Introduction 

 

Many distributions were developed because of their wide range of applications 

to analyze various data sets in finance, actuarial science, hydrology, etc. These 

recent developments aim to build a distribution model that adequately and 

suitably captures the descriptive statistical properties of a data set. 

Furthermore, the model is capable to characterize its mean, median, mode, 

skewness, kurtosis and variability to control any of its shape, location and 

scale properties. Moreover, these recent developments add knowledge to the 

growing field of probability theory, particularly the use of probability models 

in data science and analytics, as these give more capability in the distribution 

modeling of data sets with sophisticated complexities.  
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Generalized distribution models have become evident in literature because of 

their capability to make new characterizations of the data set and where the 

models are shown to be suitable and efficient for that purpose. Some recently 

developed models are as follows: extended generalized Lindley distribution 

(Kantar et al., 2018), generalized log-Moyal distribution (Bhati and Ravi, 

2018), s generalized normal distribution (Cordeiro et al., 2019), Marshall-

Olkin Kappa distribution (Javed et al., 2019), Marshall-Olkin length biased 

exponential distribution (ul Haq et al., 2019), odd log-logistic Burr X 

distribution (Usman et al., 2019), power Burr type X distribution (Usman and 

Ilyas, 2020), Kumaraswamy generalized Kappa distribution (Nawaz et al., 

2020), Marshall-Olkin extended inverted Kumaraswamy distribution  (Usman 

and ul Haq, 2020), Marshall-Olkin power Lomax distribution (ul Haqet al., 

2020) and Marshall-Olkin inverted Nadarajah-Haghighi distribution (Raffiq 

et al., 2020). 
 

In this study, a three-parameter distribution called the gamma inverse 

paralogistic (GiPL) model was developed. The formulation was based on 

generating a particular member of a gamma family using the inverse 

paralogistic distribution as the base model. The two-parameter distribution 

model called the inverse paralogistic model has the following respective 

probability density function (Equation 1) and cumulative distribution function 

(Equation 2):  

 

 

 

 

 
 

where x > 0 and τ, λ > 0 are the parameters. In the inverse paralogistic model, 

λ serves as the shape parameter and τ is the scale parameter. The figure below 

shows the plot of Equation 1 of this model. 
 

 

 

 

 

 

 

 
 

 

Figure 1. Probability density function of the inverse paralogistic distribution 
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The gamma family is based on the following structure: let G(x) be the 

cumulative distribution function of a random variable X with probability 

density function g(x). Then, Zografos and Balakrishnan (2009) formulated the 

gamma family distribution, which has the following probability density 

function and cumulative density function defined by Equations 3 and 4, 

respectively. 

 

 

 

 

 

 

where α > 0 is a parameter, Γ(⋅) is the gamma function, and for each z > 0, 

 

 

 

is the lower incomplete gamma function. As an illustration, say G and g are 

the cumulative distribution and probability density functions, respectively, of 

a standard normal random variable. Then, Figure 2 shows Equation 3 with a 

normal distribution base model. 

 

 

 

 

 

 
 
 

Figure 2. Probability density function of a gamma family with 

normal distribution base model 

 

Some of the models available in the literature with properties developed and 

with illustration for application are the following: gamma generalized Pareto 

distribution (De Andrade et al., 2017) and gamma Burr XII distribution 

(Guerra et al., 2017). 

 

The development of the model was motivated by the limited available study 

regarding the extension of the inverse paralogistic distribution model, which 
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is classically used to model data sets that are heavy-tailed. Commonly, data 

sets in hydrology, finance and actuarial science depict such behavior. In this 

model, the additional parameter makes it more flexible to handle a data set 

with sophisticated behavior regarding its shape and scale.  

 

 

 

2. Methodology 

 

2.1 Model Description 

 

A new model called the GiPL distribution is a three-parameter model based 

on the inverse paralogistic model with a family generator. By substituting 

Equation 1 and Equation 2 into Equation 3, the probability density function is 

defined by 

 

 

 

 

where x > 0. As for the cumulative distribution function, we substitute 

Equation 2 into Equation 4 to get 

 

 

 
 

We denote a random variable X following a GiPL distribution with parameters 

α, τ, and λ as X ∼ GiPL(α, τ, λ). The new model has more control over the 

shape of the distribution due to α and λ, and provides characteristics about the 

spread of the distribution due to the scale parameter τ. Figure 3 shows the 

graph of the probability density function with varying values of the 

parameters.  
 

 

 

 

 

 

 
 

Figure 3. Plots of the probability density function of GiPL(α, τ, λ) with  
varying parameters 
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The following result shows the quantile function for a GiPL(α, τ, λ) 

distribution. Specifically, the quantile function Q for X at a level p, given in 

Equation 7, is formulated as follows: by letting p: F(x̄, α, τ, λ), for a fixed x̄ > 

0 and using Equation 6, we get 

 

 

 

Solving for x̄ leads to 

 

 

 

 

where γ
–
–1 is the inverse of the lower incomplete gamma function. 

 

2.2 Data Preparation 

 

In this study, GiPL(α, τ, λ) was fitted to a data set. The data set used is on the 

number of COVID-19-infected individuals per age from April 2020 to March 

2022 in the National Capital Region (NCR) of the Philippines – a highly 

populated region in the country. The data was retrieved from the Philippine 

COVID-19 Data Dashboard made by the University of the Philippines Los 

Baños Biomathematics Initiative (Biomathematics Research Cluster, 2022). 

 

In summary, Table 1 presents some descriptive statistical measures for the 

data. 

 

Table 1. Descriptive statistical measures using the data set 

 

Data Mean Median Mode Variance Skewness Kurtosis 
       

COVID-19 38.536 38 32 308.5909 0.0340 3.3336 

 

As observed, mode < median < mean for the given data set. Additionally, the 

skewness was positive. Hence, the distribution of the data set was positively 

skewed. Furthermore, the variance was relatively large which means that data 

points tended to be far from the mean. Lastly, because the kurtosis was more 

than one, the distribution of the data set was too peaked compared with the 

normal curve. 
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2.3 Development of Properties of GiPL(α, τ, λ) 

 

The study provided various mathematical and statistical properties of a 

random variable X ∼ GiPL(α, τ, λ). Specifically, some measures of reliability 

such as the survival, hazard and cumulative hazard function were derived. 

These were followed by the derivation of the kth raw moment and moment-

generating function of X. Then, the partial moments were derived, and the 

order statistics were formulated and presented. For the estimation of 

parameters using maximum likelihood estimation, the log-likelihood function 

was provided with the score vector: the vector of partial derivatives with 

respect to the parameters. The information matrix was also provided here. The 

stochastic, likelihood-ratio and hazard orderings were established as well. 

Finally, given that the Renyi entropy has no closed form, an approximation 

was formulated. 

 

2.4 Parameter Estimation Procedure 

 

To apply the GiPL(α, τ, λ) model, calibration of the model to the given data 

set was illustrated. The method used to estimate the parameters is a popular 

technique known as the maximum likelihood estimation, which uses the log-

likelihood function of the distribution model and proceeds with the 

maximization technique. It is uncommon for complex maximization problems 

to have analytic solutions. This study employed numerical techniques using R 

software (R Core Team, 2023) to estimate the parameters along with statistical 

measures to verify the accuracy and adequacy of the model. The performance 

of this estimation procedure was backed by the conduct of a simulation study 

supported by various measures such as the mean, bias and root mean square 

errors (RMSE). Lastly, the data set on the number of COVID-19-infected 

individuals was used to illustrate the model. 

 

 

 

3. Results and Discussion 

 

3.1 Mathematical Properties 

 

3.1.1 Reliability Analysis 

 

Let X ∼ GiPL(α, τ, λ). We provide here the survival, hazard and cumulative 

hazard functions of X. The survival function, denoted by S, is given by 
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where γ+ is the upper incomplete gamma function: 

 

 

 

 

Figure 4 shows the graph of the survival function with varying values of the 

parameters. 

 

 

 

 

 

 

 

 

 

Figure 4. Plot of the survival function of GiPL(α, τ, λ) with varying parameters 

 

The hazard function, denoted by h, is the ratio of the probability density and 

the survival functions. It is given by 
 

 

 

 

 
 

Figure 5 shows the graph of the hazard function with varying values of the 

parameters.  
 

 

 

 

 

 

 

 

Figure 5. Plot of the hazard function of GiPL(α, τ, λ)  with varying parameters (other 

parameters are fixed at 1.5.) 
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Finally, the cumulative hazard function, denoted by ch, is the negative 

logarithm of the survival function. It is given by 

 

 

 

 

3.1.2 Moments 

 

The kth raw moment of X ∼ GiPL(α, τ, λ) is summarized in the following 

theorem: 

 

Theorem 1 (kth raw moment). Let μk be the kth raw moment of X ∼ GiPL(α, τ, 

λ). Then 
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where z1= –
k

τ
  and z2= –

r

τ
.  Equations 13 and 14 follow from Newton’s 

Generalization of the Binomial Theorem. 

 

Now, let y = u(1 +  s). Then (15) implies (11), as desired. ∎ 

 

The next theorem gives the moment-generating function M(t) of X ∼ GiPL(α, 

τ, λ) and the final expression uses the relationship (Equation 16). 

 

 

 

 

 

 

 

 

 

Theorem 2 (Moment-generating function). Let X ∼ GiPL(α, τ, λ) and M(t),       

t > 0, denote the moment-generating function of X. Then, 
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The proof is similar to the proof of Theorem 1. ∎ 
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in the following theorem: 

(16) 

= ∫ etxf ሺx; α, τ, λሻdx
+∞

0

 M(t) 

= ∫ ෍
ሺtxሻk

k!

+∞

k=0

fሺx; α, τ, λሻdx
+∞

0

 

= ෍
tk

k!
μ

k

+∞

k=0

 

= ෍෍෍
tk

λ
k
k!

ቀ
z1

r
ቁ ቀ

z2

s
ቁ ሺ–1ሻz1+z2–ሺr+sሻ-r/τ

1

ሺ1+sሻα
 

+∞

s=0

+∞

r=0

+∞

k=0

 (17) M(t) 

∫ ሺv – xሻkf ሺx;θሻdx
v

0

      and     ∫ ሺx – vሻkf ሺx;θሻdx
+∞

v

. 

 



A. E. Marasigan / Mindanao Journal of Science and Technology Vol. 21 (1) (2023) 59-80 

68 

 

Theorem 3 (Lower and upper partial moments). Let X ∼ GiPLሺα, τ, λሻ and 

denote μ
k
–(v) and μ

k
+(v) , respectively, the lower and upper partial moments of 

𝑋 with respect to 𝑣. Then, 
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Equation 20 follows from the binomial expansion of (v – x)k. 
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the lower incomplete gamma function, Equation 22 implies Equation 18, as 

desired. 

 

Now the upper incomplete partial moment is defined by 

 

 

 

 

 

 
 

The upper incomplete partial moment given in the theorem is developed 

similarly as the lower incomplete partial moment (Equation 18). ∎             

 

3.1.4 Order Statistics 

 

As a preliminary, let Yሺjሻ, j =1, 2,…,n be the order statistics of the random 

samples Yi, i =1, 2,…, n, taken from the cumulative distribution function 

model F. The cumulative distribution function hj,n(y) of the jth order statistic 

Yሺjሻ is given by 

 

 

 

              

Reindexing the summation from k = j to k = 0 makes the right-hand side of 

Equation 23 becomes 
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where P b
a=

a!

ሺa-bሻ!
, for each integer 0 ≤  b ≤ a.  Substituting Equation 25 to 

Equation 24 and doing some algebra result to 

 

 

 

 

 

To derive the cumulative distribution function of the jth order statistics of a 

random variable with a desired distribution, Equation 26 is used. Now, let Xi, 

i=1, 2,…,n, be random samples from a GiPLሺα, τ, λሻ distribution, where Xሺjሻ, 

j=1, 2,…,n are the order statistics. That is, Xሺkሻ< Xሺlሻ for each 1 ≤ k < l ≤ n.  

Using Equation 26 with the distribution model of X ∼ GiPLሺα, τ, λሻ given in 

Equation 6, we get 

 

 

 

 

 

 

the cumulative distribution function of the jth order statistic of X(j). 

 

3.1.5 Log-likelihood Function 

 

For a random variable with density f(x) and parameter vector θ, the log-

likelihood function is ℓ (θ; x). Using Equation 5 and letting θ = (α, τ, λ)⊺, we 

get its log-likelihood function given by 

 

 

 
 

A method to estimate the parameters of a distribution model is by using 

maximum likelihood estimation (MLE), which uses the log-likelihood 

function of a random variable. Maximizing the log-likelihood function with 
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data set ሼx1, x2,…, xnሽ, the maximum likelihood estimator θ̂ is generated by 

maximizing ℓnሺθ; xሻ=∑ ℓሺθ; xiሻ
n
i=1 . 

 

Now, using Equation 28, we get the score vector ∇θ, which is defined by 

 

 

 

 

Alternatively, the estimators by MLE can be derived by solving ∇𝜃= 0⃑ .  

Taking the partial derivatives, we get 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The estimates are obtained by simultaneously solving the equations 

 

 

 

 

The closed-form solution is not available; hence, a numerical method may be 

employed (i.e. Simulated Annealing, Newton-Quasi, Broyden-Fletcher-

Goldfarb-Shanno method, Nelder-Mead, etc.) to approximate the estimates of 

the parameters. 
 

Now, the information matrix, denoted by J(θ), is defined by 
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For large sample sizes, the MLE parameter vector is approximately normal 

with mean θ and variance-covariance matrix which is the inverse of J. This is 

helpful when constructing confidence intervals for the parameters estimated 

by the MLEs. 

 

3.1.6 Ordering 

 

We provide here the stochastic ordering of two independent random variables 

X and Y. Let X ∼ GiPL(α1, τ1, λ1 ) and Y ∼ GiPL(α2, τ2, λ2). Then, define the 

following types of the ordering of X and Y: 

 

Stochastic Ordering: X is at most Y in stochastic order, denoted by X ≤S Y, if 

FX(x) ≥ FY(y), for all x, where FX and FY are the cumulative distribution 

functions of X and Y, respectively. 

 

Likelihood-Ratio Ordering: X is at most Y in likelihood ratio order, denoted 

by X ≤L Y, if fX(x) / fY(x) is decreasing, for all x, where fX and fY are the 

probability density function of X and Y, respectively. 

 

Hazard Ordering: X is at most Y in hazard order, denoted by X ≤h Y, if hX(x)  

≥ hY(x), for all x, where hX and hY are the hazard function of X and Y, 

respectively. 

 

The following are the known series of implications for the ordering: 

 

 

 

Now, using Equation 5, we get 
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If α1 > α2, τ1 = τ2, and λ1 < λ2, then observe that 
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From the three inequalities above, we conclude that 
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decreasing. This result and its consequences are summarized in the following 

theorem. 

 

Theorem 4.  Let  X∼ GiPLሺα1, τ1, λ1ሻ and  Y ∼ GiPLሺα2, τ2, λ2ሻ. If α1 > α2, 

τ1 = τ2, λ1 < λ2, and  0 < t1 ≤ 
1+√5

2
, then Y ≤L X.  Consequently, Y ≤h X which 

implies that Y ≤S X. 

 

3.2 Parameter Estimation    

 

This section presents a simulation study to test the performance of the MLEs. 

It is followed by an application of the model given a data set. Furthermore, it 

is compared with various recently developed models. 

 

3.2.1 Simulation Study 

 

Using the quantile function given in Equation 7, sample data of sizes n = 25, 
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repeated 10,000 times. Summarized in Table 2 are the mean estimates, biases 

and RMSE of the parameters with parameter values (α, τ, λ) = (1.4, 2.5, 3.7) 

and (α, τ, λ) = (2.5, 3.5, 5.5) corresponding to the sample sizes.   

 

It can be observed that the estimates approach the true value of the parameters 

as the number of sample sizes increased. Moreover, the biases were getting 

close to zero. It was also evident that the RMSEs were decreasing whenever 

the sample size was increasing. 

 

Table 2. Mean estimates, biases and RMSEs of simulations with parameter values for 

sample sizes 25, 50, 75, 100, 150 and 200 

 
 (α, τ, λ)=ሺ1.4, 2.5, 3.7ሻ  (α, τ, λ) = ሺ2.5, 3.5, 5.5ሻ 

Sample 

size (n) 
Parameters 

Summary of simulation Sample 

size (n) 
Parameters 

Summary of simulation 

Mean Bias RMSE Mean Bias RMSE 

25 

𝛼 1.4179 -0.0179 0.1989 

25 

𝛼 2.4891 -0.0284 0.2078 

𝜏 2.5882 -0.0882 0.3765 𝜏 3.3214 -0.1125 0.275 

𝜆 3.7035 -0.0035 0.3966 𝜆 5.6264 -0.0059 0.4367 

          

50 

𝛼 1.4115 -0.0115 0.1425 

50 

𝛼 2.4911 -0.0225 0.144 

𝜏 2.541 -0.041 0.2575 𝜏 3.3205 -0.0712 0.2093 

𝜆 3.697  0.003 0.2851 𝜆 5.6229 -0.0045 0.3522 

          

75 

𝛼 1.4081 -0.0081 0.1156 

75 

𝛼 2.4923 -0.0192 0.1409 

𝜏 2.5244 -0.0244 0.2052 𝜏 3.4387 -0.0553 0.1545 

𝜆 3.6976  0.0024 0.229 𝜆 5.6032 -0.0041 0.2657 

          

100 

𝛼 1.4079 -0.0079 0.1017 

100 

𝛼 2.4944 -0.0179 0.107 

𝜏 2.5164 -0.0164 0.1779 𝜏 3.4553 -0.0411 0.1354 

𝜆 3.6953  0.0046 0.2 𝜆 5.5871 -0.0035 0.2487 

          

150 

𝛼 1.4045 -0.0046 0.0825 

150 

𝛼 2.4969 -0.0166 0.0952 

𝜏 2.5092 -0.0092 0.1411 𝜏 3.482 -0.0358 0.116 

𝜆 3.6984  0.0016 0.1628 𝜆 5.5424 -0.0019 0.243 

          

200 

𝛼 1.4029 -0.0029 0.0725 

200 

𝛼 2.4993 -0.0062 0.0733 

𝜏 2.5078 -0.0078 0.1198 𝜏 3.4827 -0.0167 0.0719 

𝜆 3.6999 0.000095 0.143 𝜆 5.5312 -0.0004 0.1919 

 

3.2.2 Application to Real-Time Data 

 

This subsection shows the superiority of the GiPL(α, τ, λ) distribution among 

other recently developed distribution models: generalized Log Moyal 

(GlogMμ, σ) (Bhati and Ravi, 2018), Marshall-Olkin Kappa distribution 

(MOK(α, β,  θ, δ)) (Javed et al., 2019), gamma generalized normal distribution 

(GNG(μ, σ, s, a)) (Cordeiro et al., 2019), Marshall-Olkin length biased 

exponential distribution MOLBE(γ, β) (ul Haq et al., 2019), Marshall-Olkin 

extended inverted Kumaraswamy distribution (MOEIKλ, α, β) (Usman and ul 

Haq, 2020), Marshall-Olkin power Lomax distribution MOPL(α, β, γ, λ) (ul 

Haq et al., 2020) and Marshall-Olkin inverted  Nadarajah-Haghighi 

distribution MOINH(α, β, γ) (Raffiq et al., 2020). These are heavy-tailed 

distributions that can be used to model data sets that deviate from the normal 

distribution in terms of numerous statistical properties. 
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As observed in the probability-probability plot in Figure 6, there was a 

significant variation over the right tail. This was expected as the statistics 

presented in the previous section to describe the distribution of the data 

suggested that the distribution was positively skewed and heavy-tailed 

indicating the need to use a heavy-tailed distribution to model the data set. 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Probability-probability plot given the COVID-19 data set 

 

The measures for model selection used to assess the superiority of the GiPL(α, 

τ, λ) were log-likelihood (log-LL), Akaike Information Criterion (AIC), 

corrected Akaike Information Criterion (AICc), and Bayesian Information 

Criterion (BIC). The goal was to compare models and determine a model with 

the highest log-LL, and lowest AIC, AICc, and BIC. The maxLik package in 

R was employed with Nelder-Mead optimization to estimate the MLEs of the 

parameters, thanks to Henningsen and Toomet (2010). 

 

Given the data set on the number of COVID-19 infected individuals per age, 

summarized in Table 3 are the estimates of the parameters of GiPL(α, τ, λ), 

GlogM(μ, σ), MOKα, β, θ, δ, GGN(μ, σ, s, a), MOEIK(λ, α, β), MOLBE(γ, β), 

MOPL(α, β, γ, λ) and MOINH(α, β, γ).  

 

Furthermore, the corresponding values of log-LL, AIC, AICc, and BIC are also 

given. The GiPL(α, τ, λ) dominated all the other models considered; that is, 

GiPL(α, τ, λ) had the highest log-LL and the lowest AIC, AICc and BIC. 

Therefore, GiPL(α, τ, λ) gives the best fit compared with the other models. 
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Parameter estimates and measures for model selection using the data set on 
the number of individuals per age who were infected with COVID-19 in NCR, 

Philippines from April 2020 to March 2022 

Table 3.  

 

 
 

Model 
Parameter estimation 

(Standard error) 

Measures for model selection 

log-ll AIC BIC AICc 

GiPL(α, τ, λ) 

α̂ = 0.0163 ሺ0.0004ሻ 

τ̂ = 3.376 

൫5.4 × 10
-6൯ 

λ̂ = 0.0020 

൫1.6 × 10
-8൯ 

-752122.4 1504251 1504267 1504251 

      

GlogM(μ, σ) 
μ̂ = 0.7494 ሺ0.0012ሻ 

σ̂ = 16.5010 ሺ0.0356ሻ 
-870337 1740678 1740689 1740678 

      

MOK(α, β, θ, δ) 

α ̂= 2.0098ሺ0.0080ሻ 

β̂ = 22.9569ሺ0.0382ሻ 

θ̂ = 2.4713 ሺ0.0131ሻ 

δ̂ = 15.8070(0.1268) 

-760724.9 1521458 1521479 1521458 

      

GGN(μ, σ, s, a) 

μ̂ = 10.14 

൫1.9 × 10
-5൯ 

σ̂ = 0.3444 

൫9.9 × 10
-6൯ 

s ̂= 0.5880 

൫9.3 × 10
-6൯ 

â = 16.61 ሺ0.0088ሻ 

-756556.3 1513121 1513142 1513121 

      

MOEIK(λ, α, β) 

λ ̂= 1.1834ሺ0.0047ሻ 

α ̂= 1.1098 ሺ0.0024ሻ 

β̂ = 26.4833 ሺ0.1518ሻ 

-1189690 2379386 2379402 2379386 

      

MOLBEሺγ, βሻ 

γ = 2.97 × 10
-3

 

൫1.1 × 10
-6൯ 

 β = 0.0015 ሺ0.0150ሻ 

-788627.4 1577259 1577269 1577259 

      

MOPLሺα, β, γ, λሻ 

𝛼 = 0.0064 

൫9.975 × 10
-6൯ 

 β = 154.3 ሺ0.0089ሻ 

γ = 19.91 ሺ0.1169ሻ 

 λ = 3.639 ሺ0.0003ሻ 

-863759.7 1727527 1727549 1727527 

      

MOINHሺα, β, γሻ 

 α = 3.8546 ሺ0.0313ሻ 

 β = 1.2028 ሺ0.0119ሻ 

 γ = 7.2761 ሺ0.0316ሻ 

-847350.5 1694707 1694723 1694707 

 



A. E. Marasigan / Mindanao Journal of Science and Technology Vol. 21 (1) (2023) 59-80 

77 

 

In Figure 7 the COVID-19 data set histogram along with the fitted probability 

density function using the estimates for GiPL(α, τ, λ) in Table 4 show that 

there were some small overestimation and underestimation over the left and 

right tails, respectively. But despite this, a good picture of the fitted model 

compared to the histogram of the data set is observed. 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

Figure 7. Histogram with fitted probability density function 

 

Figure 8 shows the empirical cumulative distribution function with fitted GiPL 

cumulative distribution function using the estimates for GiPL(α, τ, λ) in Table 

3. It provides an illustration of how adequate the GiPL(α, τ, λ) is used to model 

the data set in terms of cumulative distribution. 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

Figure 8. Empirical distribution with fitted GiPL distribution 

 

Age 

P
ro

b
ab

il
it

y
 

Empirical CDF 

Using GiPL CDF 

P
er

ce
n
ta

g
e
 

Age 

40 

 

 
30 

 
 
 

20 

 

 
10 

0                       20                      40                     60                      80                     100 

0
  
  
  
  
  
  
1
0
  
  
  
  
  
 2

0
  
  
  
  
  

 3
0
  
  
  
  
  
  
4
0
  
  
  

  

0                   20                 40                   60                 80                 100 

0
  
  
  
0
.2

  
  
  
0
.4

  
  
 0

.6
  
  
  
0
.8

  
  
  
1

 



A. E. Marasigan / Mindanao Journal of Science and Technology Vol. 21 (1) (2023) 59-80 

78 

 

In summary, Figure 9 presents the log-LL plot to illustrate the behavior of the 

log-LL over the neighborhood of the two-parameter estimates having other 

parameters constant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Loglikelihood plot for GiPL(α, τ, λ) 

 

 

 

4. Conclusion and Recommendation 

 

A three-parameter distribution model called the GiPL distribution, denoted by 

GiPL(α, θ, τ), was proposed. The development made use of the inverse 

paralogistic model with a gamma family generator. Introduced together were 

the probability density and cumulative distribution functions and quantile 

functions of GiPL(α, θ, τ). Properties such as some measures for reliability 

analysis, the raw moment and moment-generating function, partial moments, 

order statistics, log-likelihood functions, the Renyi entropy, the stochastic, 

likelihood-ratio and the hazard ordering were presented. The performance of 

the parameters was studied using the MLEs. The mean estimates, biases, and 

RMSEs showed that as the sample size increases, the mean estimates 
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approached the true value of the parameters initially set, the biases were close 

to zero, and the RMSEs relatively decreased. Finally, as the data description 

implied the use of a heavy-tailed distribution model because the data set was 

positively skewed and the kurtosis relatively deviated from the normal, it was 

used to show the superiority of the GiPL(α, θ, τ) over the recently developed 

models. Particularly, measures such as log-LL value, AIC, BIC and AICc for 

model selection suggested that GiPL(α, θ, τ) dominated the seven models used 

because of having the highest log-LL and the lowest value of AIC, BIC and 

AICc. Among all these models, the MOEIK(λ, α, β) was the least exceptional. 
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