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Abstract 
 

Several studies have already proven the existence of unsustainable human activities or 

disturbances assumed to cause land cover change on the Mts. Palay-Palay Mataas-

Na-Gulod Protected Landscape (MPPMNGPL)in the Philippines. However, there is a 

dearth of published works on how these disturbances affect the different land cover 

classes in this protected landscape. This study aimed to help fill such information gap 

by investigating the extent of land cover changes and potentially disturbed forest areas 

inside the MPPMNGPL. Using geographic information system and remote sensing, 

classified maps were produced from Sentinel-2 and Landsat-8 images through 

supervised classification. The study described the land cover types and land cover 

changes in the area from 2015 to 2021 and identified potentially disturbed forest areas 

using the normalized difference moisture index (NDMI). The land cover classes 

identified in the area included forest, grassland, built-up, barren land and water. From 

2015 to 2021, the largest land cover change came from the 510.92 ha of forest area in 

Ternate that turned into a grassland area as reflected in the NDMI result – an indicator 

of potential forest disturbance. Change detection showed that from 2015 to 2021, the 

grassland area had an increase of +14.05%, while the forest area had a decrease of   

-13.8%. Results showed that forest is still the most dominant land cover class in the 

protected landscape. Further studies and ground validation must be conducted to 

determine the specific causes of the land cover changes.  
 

Keywords: image classification, normalized difference moisture index, protected area,  

  remote sensing, Sentinel-2 

 

 

1. Introduction 

 

In the Philippines, land cover changes are inevitable in urbanizing areas and 

even within protected areas. A nationwide forest cover assessment from 2000 

to 2012 showed that many terrestrial protected areas in the Philippines had 
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encountered drastic forest cover loss (Apan et al., 2017). The same study 

revealed that some of the protected areas with the largest forest loss area have 

high rates of forest loss within their buffer zones. Soriano et al. (2019) 

assessed the land use/land cover (LULC) and urban sprawl in the Mount 

Makiling Forest Reserve Watersheds and buffer zone from 1992 to 2015. 

Results showed that LULC change happened when built-up areas increased 

by 117% despite the regulations implemented. In addition, LULC monitoring 

at the Mt. Pulag National Park from 1990 to 2020 disclosed an increase in 

agricultural and built-up areas and a decrease in forest areas indicating that 

human-induced land cover changes were causes of forest loss (Doyog et al., 

2021). Lastly, at the Allah Valley Protected Landscape in South Cotabato, 

trends in land cover change detected from 1989 to 2015 showed a decreasing 

forest area and increasing agricultural, grassland and built-up areas (Janiola 

and Puno, 2018). Changes in the physical characteristics of the land cover, 

including the distribution of vegetation, water, soil and other physical features 

catalyzed by natural or anthropogenic factors, result in land cover changes 

(Yadav et al., 2019). The impetus for land cover changes has been attributed 

to the direct drivers of deforestation including unsustainable forest product 

extraction, agricultural expansion and infrastructure construction (Carandang 

et al., 2013).  

 

The Mts. Palay-Palay Mataas-Na-Gulod Protected Landscape (MPPMNGPL) 

was declared a protected area in 2007 through Proclamation No. 1315, s. 2007, 

under the National Integrated Protected Areas System (NIPAS) Act of 1992 

and one of the key conservation sites in the Philippines (Mallari and 

Tabaranza, 2001). Like other protected areas, it has experienced forest 

disturbance due to land cover changes. Studies have recorded anthropogenic 

activities in the area including harvesting non-timber forest products, charcoal 

manufacturing, quarrying, cow grazing and logging within the strict protection 

zone (SPZ). Human encroachment, which can contribute to the manifestation 

of land cover changes, has also been documented in the MPPMNGPL 

(Angeles et al., 2016; Causaren et al., 2016).  

 

However, the extent of land cover change in MPPMNGPL has not been 

examined. Hence, there is a need to describe the extent of land cover changes. 

Moreover, potentially disturbed areas in the protected landscape must be 

determined using geographic information system (GIS) and remote sensing 

(RS) since traditional mapping techniques such as manual cartography, sketch 

mapping, or pen-and-paper sketching are time-consuming, costly and cannot 

possibly illustrate and quantify spatial and temporal changes (Baamonde et 
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al., 2019; Verma and Garg, 2019). These technologies have become the 

common approach in land cover change analysis and detection (Abino et al., 

2015; Apan et al., 2017; Haque and Basak, 2017; Yadav et al., 2019). Remote 

sensing, combined with GIS, can facilitate digital change detection by 

capturing a larger view of the area of interest without physical contact using 

remotely sensed data observing the earth’s surface features and detecting 

spatial changes from multi-temporal satellite images more clearly in other 

applications (Alqurashi and Kumar, 2013; Halefom et al., 2018; Asokan and 

Anitha, 2019). Recent studies have proven the effectiveness of GIS and the 

use of remotely sensed images in facilitating the detection, analysis and 

prediction of land cover changes in different areas around the world (Barakat 

et al., 2018; Eskandari et al., 2020; Sánchez-Espinosa and Schröder, 2019; 

Thanh et al., 2020). Essentially, they allow for time-saving and less expensive 

methods pertinent to the study including the acquisition of satellite images 

with different temporal, spatial and spectral resolutions; image classification 

to produce reliable maps presenting the different land cover classes; and use 

of vegetation index to identify potentially disturbed areas. Moreover, it has 

become more important to utilize these technologies as it was difficult to reach 

and access the protected landscape due to the restrictions caused by the 

COVID-19 pandemic. 

 

The semi-automatic classification plugin (SCP) offers tools that can facilitate 

the different phases from acquisition to post-processing of remotely sensed 

data and specifically ease the image classification processes (Congedo, 2021). 

Image classification can be done through supervised or unsupervised 

classification. In supervised classification, training sets or identical pixels 

within the image are visually selected and assigned to pre-determined classes 

(e.g., forest, built-up and water) representing the pixels (Perumal and 

Bhaskaran, 2010). Moreover, this can be done following a series of processes, 

namely defining the training sets, extractions of signatures and classification 

of the image. Prior knowledge about the site increases the accuracy of this 

method (Yiqiang et al., 2010). Shah and Kiran (2021) claimed that supervised 

classification was a versatile, useful and easy-to-use method for land cover 

change detection. 

 

It is also a common approach in several studies related to land cover change 

detection conducted in the Philippines (Dumago et al., 2018; Soriano et al., 

2019; Almadrones-Reyes and Damagac, 2022). Spectral angle mapper (SAM) 

is one of the available classification algorithms from the SCP. Kruse (1994) 

stated that the SAM algorithm is the most basic approach to producing a map 
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demonstrating the spatial distribution of its materials by empirically matching 

the two spectra considering the determined spectral similarity. Anggraeni and 

Lin (2011) employed the SAM algorithm as one of the techniques to measure 

fire-induced deforestation in South Sumatra, Indonesia. Brebante (2017) has 

also used this in LULC change detection in Marikina River Basin, Philippines. 

The normalized difference moisture index (NDMI) measures the vegetation 

water content and is known for its high correlation with the canopy water 

content (United States Geological Survey, 2021; Klemas and Smart, 1983). 

Studies have found that NDMI as a vegetation index is suitable for detecting 

vegetation disturbances. In Wilson and Sader (2002), it was found through 

classification trials that NDMI is more accurate than the normalized difference 

vegetation index (NDVI), which is a more commonly used method. Its 

accuracy is due to its greater sensitivity to vegetation disturbances and 

resistance to data noise than the other vegetation indices (Ochtyra et al., 2020). 

These technologies provide detailed information that helps researchers 

understand the condition of protected areas, which can then serve as a basis 

for making recommendations regarding their management. 

 

The general objective of this study was to assess the extent of land cover 

changes and identify potentially disturbed areas in MPPMNGPL from 2015 

to 2021 using satellite imagery. The study specifically aimed to determine 

various land cover classes, describe the land cover changes and identify forest 

areas within the protected landscape that are potentially disturbed. 

 

 

2. Methodology 

 

2.1 Description of the Study Site 

 

MPPMNGPL spans 3,973.13 ha or approximately 4,000 ha within the 

municipalities of Maragondon and Ternate in Cavite and Nasugbu in 

Batangas, Philippines (Figure 1) with geographic coordinates of 14° 16’ 

58.432” N latitude and 120° 51’ 49.227” E longitude. It is the only protected 

area in the province of Cavite. The area has become popular among many 

hikers and mountain climbers (Municipality of Maragondon, 2013). Based on 

rainfall distribution, MPPMNGPL is under the Type 1 climate. Under this 

type, there are two well-defined seasons based on rainfall and temperature: 

dry from November to April and wet from May to October wherein the 

maximum rain period can be experienced from June to September (Philippine 

Atmospheric, Geophysical and Astronomical Services Administration, n.d.). 
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It has three peaks located on Pico de Loro (595 masl), Mataas Na Gulod (622 

masl), and Palay-Palay (647 masl) (Causaren, 2016). In 1975, by Proclamation 

No. 1520, the Municipalities of Maragondon and Ternate in Cavite and the 

Municipality of Nasugbu in Batangas were declared tourist zones. The 

proclamation allowed the Philippine Tourism Authority to identify areas with 

high tourism values where development efforts from both the government and 

private sectors can be implemented to generate tourist receipts and foreign 

exchange. According to the Cavite Ecological Profile (2020), the MPPMNG 

was developed into an eco-tourism spot because of its vast floral and faunal 

assemblage despite the unresolved issues regarding the imbalances in its 

exploration and conservation. As indicated in the 2010-2020 Comprehensive 

Land Use Plan (CLUP) of Ternate (Municipality of Ternate, n.d.), big tourism 

resorts such as the Puerto Azul Beach Resort and Hotel and Caylabne Bay 

Resort were developed inside the protected landscape resulting in some 

boundary conflicts. With that, it has become a region of interest because 

despite being proclaimed a key biodiversity hotspot and protected area in 

2007, most recent studies confirmed that anthropogenic activities and 

disturbances still exist within its boundaries (Angeles et al., 2016; Causaren 

et al., 2016; Cavite Ecological Profile, 2020).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Location map of the study area; true-color Sentinel-2 image of 

MPPMNGPL using bands 4, 3 and 2 
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According to the Esri 2020 land cover classification (Table 1) (Esri, 2022), 

the land cover types in the area include forest land, grassland, built-up area, 

barren land and water. The estimated forested area is 62.5%, and the non-

forested is 37.5% (Causaren, 2016). This forest was classified as a secondary 

growth forest of molave-dipterocarp type where premium tree species such as 

Albizia acle, Vitex parviflora, Diospyros blancoi, Shorea negrosensis, Shorea 

contorta, Shorea guiso, Canarium ovatum and Cinnamomum mercadoi can be 

found. A faunal diversity assessment conducted in 1995 by the Professional 

Environmental Management Company showed that 124 wildlife species were 

identified in the area (National Economic and Development Authority, 2008). 

Based on a floral assessment conducted by Medecilo and Lagat (2017), the 

most dominant species with the highest importance value index in the 

protected landscape are S. guiso, Ficus chrysolepis and Diospyros 

pyrrhocarpa. The reported remaining lowland evergreen rainforest of Cavite 

is located in the northern portion of the protected landscape on Mt. Palay-

Palay (Municipality of Maragondon, 2013). There were virtually no land 

cover change analysis and detection studies previously done in the protected 

landscape. 

 

Table 1. Definition of land cover classes based on ESRI 2020 land cover 

 

Land cover class Definition 

Forest land 

Area with significant clustering of tall (approximately 15 m or 

higher) and dense vegetation in a closed or open canopy; this 

includes closed and open canopy forests.  
  

Grassland 

Open areas covered with homogeneous grasses mixed with 

sporadic and small clusters of shrubs and tree growths; and 

shrub-filled clearings within forests that are not taller than trees 
  

Built-up area 

Area either rural or urban with man-made structures such as 

residential housings, buildings, parking structures, major roads, 

rail networks and other infrastructures 
  

Barren land 
Area that shows exposed rock or soil with very little to no 

vegetation for the entire year 
  

Water 

Area where water is predominantly present for the entire year; it 

contains little to no sporadic and small clusters of vegetation. It 

does not include areas with sporadic or ephemeral water and 

built-up structures like docks.  

 

2.2 Data Collection and Pre-Processing 

 

In this study, Sentinel-2 MSI: Level-1C satellite imagery was obtained from 

the Earth Engine Data Catalog of Google Earth Engine (GEE). GEE is a free 

cloud-based computational platform using Google Cloud and JavaScript 
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language to access and process petabyte scales of satellite data (Praticò et al., 

2021). Sentinel-2 imagery performs better than Landsat-8 imagery in 

vegetation analysis due to its finer spatial resolution (Chaves et al., 2020) and 

improved spectral and temporal resolutions (Sánchez-Espinosa and Schröder, 

2019). Due to its higher spatial resolution than Landsat-8, mapping small 

disturbances became possible making it more effective in delineating log 

landings and filling gaps than Landsat-8 data (Lima et al., 2019). 

 

The selection and use of 2015 Landsat-8 C1 T1 satellite imagery from the 

same platform was necessary because the Sentinel-2 imagery covering the 

study site for 2015 was very cloudy causing an error in the processing. Even 

though Landsat-8 imagery has a lower resolution than Sentinel-2, it has been 

used in many published studies related to land cover change analysis in 

protected areas such as by Soriano et al. (2019) and Janiola and Puno (2018). 

The details of the satellite data sources of 2015, 2018 and 2021 images were 

provided (Korhonen et al., 2017; Li and Roy, 2017; Wang et al., 2018) (Table 

2). 

 

Table 2. Details of the satellite data sources of the acquired satellite images 

 

Parameters 
Acquired satellite images 

2015 2018 and 2021 
   

Platform Landsat-8 Sentinel-2 
   

Satellite sensor 
Operational land imager (OLI)/ 

Thermal infrared sensor (TIRS) 

Multi-spectral instrument 

(MSI) 
   

Spectral bands 7 13 
   

Spatial resolution 30 m 10/20/60 m 
   

Radiometric resolution 16 bits 12 bits 
   

Temporal resolution 16 days 10 days 
   

Availability 
Open source 

2013-03-18 to present 

Open source 

2015-06-23 to present 

 

Several variables were specified to filter the image collection such as the area 

of interest (AOI), time interval and cloud percentage. A polygon was created 

in the GEE code editor to set the AOI boundary while ensuring that 

MPPMNGPL was entirely covered. Three different time periods with the 

following temporal filters were used: 2015 (2015-01-01, 2016-12-31), 2018 

(2018-01-01, 2018-12-31) and 2021 (2020-01-01, 2021-12-31). Images with 

less than 10 and 5% cloud pixel percentages for Sentinel-2 and Landsat-8, 

respectively, were extracted. 
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The GEE code editor performed atmospheric correction for the acquired 

images except for the Landsat-8 image as it was imported from a dataset that 

was already atmospherically corrected. Cloud masking within the temporal 

filters was also done in the code editor. The extent of the GEE processing was 

confined to the AOI boundary. Finally, the spatial resolution was set to 10 m 

for Sentinel-2 images and 30 m for Landsat-8 images. The three images from 

2015 (Landsat-8), 2018 (Sentinel-2) and 2021 (Sentinel-2) were exported to 

Google Drive. A naming convention for the acquired images was created 

conveying the satellite data source, date of acquisition (YYYY/MM/DD), 

cloud pixel percentage, location and temporal filter used (Table 3). 

 

Table 3. File names of the satellite images following a  

specified file naming convention 

 

Satellite image File name 
  

2015 Landsat-8 

image 
L8_2022/03/04_5_MPPMNGPL_2015/01/01-2016/12/31 

  

2018 Sentinel-2 

image 
S2_2022/03/08_10_ MPPMNGPL_2018/01/01-2018/12/31 

  

2021 Sentinel-2 

image 
S2_2022/03/08_10_ MPPMNGPL_2020/01/01-2021/12/31 

 

2.3 Image Classification and Accuracy Assessment 

 

Using the 2015 (Landsat-8), 2018 (Sentinel-2) and 2021(Sentinel-2) images, 

three classified maps were generated through supervised classification using 

the SCP in QGIS v.3.16 (QGIS Development Team, 2020). As required by the 

SCP, bands 1, 2, 3, 4, 5, 6 and 7 of Landsat-8 image, and bands 1, 2, 3, 4, 5, 

6, 7, 8, 8A, 9, 10, 11 and 12 of Sentinel-2 images were used in the image 

classification. Although other classification algorithms can be used, the SAM 

algorithm was employed to classify land cover classes as it is the most basic 

and available in the SCP. This algorithm assigns a particular pixel to represent 

a specific class depending on the determined spectral similarity between two 

pixels. This similarity is obtained by measuring the cosine of the angle 

between the two-pixel vectors (Tu et al., 2018; Yan and Roy, 2018). Verma 

et al. (2020) determined the best algorithm for LULC analysis among five 

parametric and nonparametric algorithms. The performance of SAM recorded 

the highest overall agreement and the most minor quantitative errors proving 

that it is the most accurate among the algorithms for LULC analysis. 

 

At least 30 regions of interest (ROIs) were created for each land cover type. It 

should be noted that each ROI contains a different number of pixels as the 
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land cover types greatly differ in size (Figure 2). The classification report in 

the SCP determined the total areas and percentages of each land cover type. 

An accuracy assessment was performed on each classified map using at least 

150 reference points from Google Earth Pro v. 7.3.2 (Google, 2022). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Vector layer displaying the generated ROIs for years 2015, 2018 and 2021 

 

The accuracy assessment was based on the calculation of a confusion matrix 

presenting the comparison of mapped information with reference data for the 

identified ROIs to determine the accuracy of the classification (Congalton and 

Green, 2019). Accuracy parameters from the confusion matrix were the 

producer’s accuracy, the user’s accuracy, the overall accuracy and the kappa 

coefficient. The producer’s accuracy was calculated for each land cover class 
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by dividing the number of correctly classified sites that matched the reference 

sites by the total number of reference sites for that class (Equation 1) (Liu et 

al., 2007). The user’s accuracy was computed by dividing the number of 

correctly classified sites in a class by the total number of sites classified in the 

same class (Equation 2) (Grigoraș and Uriţescu, 2019). The overall accuracy 

was calculated by dividing the total number of correctly classified sites by the 

total number of reference sites (Equation 3). The kappa coefficient indicates 

the agreement between the classified image and the reality (Equation 4).   

 

 

 

 

 

 

 

 

 

 

 

 

Here, i represents the class of reference sites; ai is the number of correctly 

classified sites; xi indicates the total number of reference sites of a class; yi 

corresponds to the total number of sites classified in the same class; N 

represents the total number of reference sites; and C is the number of classes. 

After ensuring that the classified maps were valid and accurate, the land cover 

change analysis was carried out through the SCP. 

 

2.4 Identification of Potentially Disturbed Areas 

 

The selection of an appropriate vegetation index is essential in identifying 

potentially disturbed areas. The NDMI was used to determine the forest areas 

within the study site that were potentially disturbed. The NDMI formulas for 

Sentinel-2 and Landsat-8 data are represented in Equations 5 and 6, 

respectively. 
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where B8 (Sentinel 2) and B5 (Landsat-8) are the near-infrared (NIR) band, and 

B11 (Sentinel 2) and B6 (Landsat-8) are the shortwave infrared (SWIR) band.  

The index has the ability to determine vegetation water content by the 

combination of NIR and SWIR bands which can remove variations from the 

leaf’s internal structure and leaf’s dry matter content (Ceccato et al., 2001). 

This index has been used in the monitoring of forest disturbances in 

Afromontane Forest in Kenya (Brandt et al., 2018), forest degradation, 

deforestation and regeneration detection in montane forests of Eastern 

Tanzania (Hamunyela et al., 2020) and tropical forest disturbance monitoring 

in Tanzania and Brazil (Chen et al., 2021). 

 

 

 

3. Results and Discussion 

 

3.1 Land Cover Classification and Accuracy 

 

Based on the image classification, MPPMNGPL was predominantly covered 

by forest followed by grassland (Figure 3). From 2015 to 2021, the land cover 

classes found in Maragondon were forest, grassland and built-up area, with 

forest dominating the protected landscape. In Ternate, the land cover classes 

identified were forest, grassland, built-up area, barren land and water. On the 

other hand, in Nasugbu, only forest and grassland were the classes identified. 

 

Forest cover (80.97%) was present in all three municipalities, wherein Ternate 

and Maragondon had the largest forest areas. Grassland (18.08%) was also 

found in the three municipalities and was most abundant in Ternate. Built-up 

areas (0.56%) were found mainly in Ternate, smaller patches in Maragondon, 

and none in Nasugbu. Barren lands (0.20%) were present only in Ternate 

mainly concentrated in a previous and inoperative mining/quarry site and its 

peripheral area. Water bodies (0.23%) were found in Ternate and 

Maragondon. These were situated along the edge and boundary of the 

protected area and were very minimal in size. As shown in the classified maps, 

MPPMNGPL was generally covered by forest from 2015 to 2021 followed by 

grassland as the second largest class. The built-up area, barren land, and water 

were significantly smaller as they only covered less than 1% of the protected 

landscape. 

 

The change detection showed that the forest and barren land decreased over 

time, with the forest having the largest decrease, from 94.77 in 2015 to 80.97% 
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in 2021 (Figure 4). On the other hand, grassland, built-up area and water 

increased over time. From 4.03 to 18.08%, grassland had the largest increase 

in area. Across the years, forest and barren land had a decrease of -13.8 and     

-0.46%, respectively. In contrast, grassland, built-up area and water had 

incurred a +14.05, +0.11 and +0.14% increase, respectively. No studies were 

found that can explain why the water has been increasing in the protected 

landscape. The use of images from different satellite data sources can be a 

probable reason; nevertheless, the percentage of change in the water was very 

minimal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Classified Land Cover of MPPMNGPL in 2015, 2018 and 2021 
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Figure 4. Areas in percentages of each land cover class from 2015, 2018 and 2021 

 

Table 4 presents the summary of the producer and user’s accuracies, kappa 

coefficient and overall accuracy of each classified image. According to 

Thomlinson et al. (1999), the acceptable minimum overall accuracy for land 

classification is 85%, while for Congalton (1991), it should not be less than 

70%. In this regard, the accuracy assessment for all the classified images was 

acceptable. 

 

Table 4. Summary of the confusion matrix of the 2015, 2018 and 2021  

classified images 

 

Classified 

image 

Producer’s 

accuracy  
(%) 

User’s 

accuracy  
(%) 

Kappa 

coefficient 

Overall 

accuracy  
(%) 

     

2015 100 88.24 0.74 89.61 
     

2018 99.34 96.74 0.93 96.51 
     

2021 100 96.77 0.94 96.78 

 

3.2 Land Cover Changes 

 

Generally, the 2015-2018 and 2018-2021 land cover change maps have shown 

almost the same results because most changes have occurred in the same areas 

(Figure 5). Specifically, most of the land cover changes happened in Ternate 

followed by Maragondon and the least in Nasugbu. The largest land cover 

change happened to some 510.92 ha (2015-2018) and 410.22 ha (2018-2021) 

of forest area in Ternate that turned into a grassland (Figure 6). A total of 58.54 

ha of grassland became forest from 2015-2018. Some built-up areas and 
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barren lands likewise turned into grassland areas. It was also seen that 13 ha 

of forests in 2015-2018 and 9.55 ha of grassland in 2018-2021 had been turned 

into built-up areas. Other land cover changes had occurred; however, they 

were very minimal compared to the changes in the grassland area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. 2015-2018 and 2018-2021 land cover changes maps of MPPMNGPL 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6. 2015-2018 and 2018-2021 land cover changes 
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According to the 2010-2020 CLUP of Ternate (Municipality of Tarnate, n.d.), 

some open grassland spread even within the forest and to areas with more than 

18% slope. Moreover, the CLUP documented occasional exploitation through 

kaingin and logging activities leading to the denudation of some portions of 

the forest. Causaren et al. (2016) stated that in Cavite, grasslands can usually 

be found on the edges of its remaining forest fragments. Several anthropogenic 

threats were observed in the forest fragments in Mt. Palay-Palay. The most 

common threat was the conversion of forests to agricultural and residential 

lands (Lagat and Causaren, 2019). It can be a significant cause for the spread 

of the grassland area into the forest; hence, the increasing grassland area over 

time. 

 

Some areas inside MPPMNGPL have been designated for small settlements, 

rural gardens and kaingin (Municipality of Maragondon, 2013). Due to 

tourism and other activities, threats were observed from the construction of 

resorts and highways and the settlers’ encroachment (Medecilo and Lagat, 

2017). In addition, it was stated in the Cavite Ecological Profile 2020 that 

illegal cutting of trees, encroachment of informal settlers and unsustainable 

activities caused deforestation even within the protected landscape (Province 

of Cavite, 2020). 

 

The 2010-2020 CLUP of Ternate also documented a report by the Department 

of Environment and Natural Resources (DENR) of a quarry site inside the 

protected landscape shown in the classification as a contiguous barren land. 

The change detection showed that this area transitioned into grassland. As per 

the DENR Mines and Geosciences Bureau (DENR-MGB) Region 4-A (2021), 

mining companies have planted 52,265 seedlings as of 2015 in more than 7.85 

ha of mined-out areas in Cavite. This activity needs to be verified on the 

ground, however. It is important to confirm whether the reforestation activity 

contributed to the conversion of the contiguous barren land caused by previous 

mining/quarrying activities into grassland and forest areas over time. 

 

Changes in forest and barren land have caused an increase in grassland areas. 

In particular, the forest has recorded the largest land cover change in both 

periods contributing to the creation of new grasslands. 

 

3.3 Potentially Disturbed Areas 

 

The results of the NDMI from the three different years are presented in Figure 

7. NDMI can only have values between negative 1 and positive 1 wherein the 
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negative values indicate that the area is disturbed. In contrast, the positive 

values indicate no water stress or undisturbed area. Here, the red pixels 

represent a relatively low vegetation water content, while the blue pixels 

represent high vegetation water content. The intervals and interpretations of 

values were defined following the study of Berca and Horoiaș (2022) and the 

index provided by Agricolus (Antognelli, 2018) (Table 4). 

 

The areal changes in NDMI values through the years 2015 to 2021 were used 

to support the result of the study (Table 4). Through the years, most of the 

areas in the protected landscape fall under two categories: areas with mid-high 

canopy cover with high water stress and areas with high canopy cover with no 

water stress. There has also been a noticeable increase in the areas with 

relatively low NDMI values indicated by red to orange pixels. 

 

Table 4. Areal changes in NDMI values through years 2015-2021 

 

NDMI values 
Area (ha) 

2015 2018 2021 
    

-0.2-0 

(Low canopy cover, high water stress) 
4.23 22.08 16.01 

    

0-0.2 

(Average canopy cover, high water 

stress) 

158.76 366.94 387.44 

    

0.2-0.4 

(Mid-high canopy cover, high water 

stress) 

2128.5 1326.04 1418.39 

    

0.4-0.6 

(High canopy cover, no water stress) 
1718.01 1936.41 1997 

    

0.6 -0.8 
(Very high canopy cover, no water 

stress) 

0 355.24 189.48 

    

0.8-1 
(Total canopy cover, no water stress) 

0 1.78 0.12 

 

The 2015 NDMI showed that most of the areas in Ternate and a few in 

Maragondon had relatively low NDMI values. Some 4.23 ha of MPPMNGPL 

had low canopy cover with high water stress, while a large portion of the 

protected landscape (2,128.5 ha) had mid-high canopy cover with high water 

stress. Moreover, no areas inside the protected landscape were identified as 

having very high or total canopy cover with no water stress. The 2018 NDMI 

showed that there had been an increase in areas with low to moderate NDMI 

values. Additional portions were detected as having low to mid-high canopy 
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with water stress which could be the result of increasing disturbance because 

of the forest-grassland conversion from 2015 to 2018. However, it was found 

that 355.24 ha of forests had very high canopy cover with no water stress in 

2018. The 2021 NDMI showed almost the same result as 2018; however, some 

areas in the protected landscape had slightly higher NDMI but were still within 

low to moderate values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. NDMI of MPPMNGPL in 2015, 2018 and 2021 

 

Comparing the 2015 and 2018 NDMI images, a huge portion in the northeast 

of the protected landscape had lower NDMI showing disturbance over the 

years. It can be attributed to the forest areas being converted to grassland areas 
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from 2015 to 2018. In addition, some of the already disturbed areas in 2015 

became more disturbed over the years. Another observation is that from 2015 

to 2018, the forest areas surrounding the disturbed grasslands showed potential 

disturbance. It may be due to the continuous expansion of grassland areas 

affecting the forest. From 2018 to 2021, the potentially disturbed areas 

remained almost the same. 
 

The forest experienced the largest land cover change mostly turning into 

grassland based on the image classification. Thus, the results of the NDMI 

also correspond to the results of change analysis since areas with low to 

moderate NDMI values were also the same areas with noticeable land cover 

changes in the classification. 
 

 

 

 

4. Conclusion and Recommendation 
 

The different land cover classes identified in the protected landscape were 

forest, grassland, built-up area, barren land and water. Although the size of 

forest areas decreased from 2015 to 2021, it is still the dominant land cover in 

the protected landscape followed by grassland. The change detection also 

showed the existence of land cover changes in MPPMNGPL reflecting that 

the forest and barren land have decreased over time while grasslands have 

increased. The forest showed potential disturbances based on NDMI values 

through the years. Given these results, there is a need to conduct further studies 

in the areas where disturbances have been identified. Site visits and 

assessments must be performed to confirm the actual causes of the land cover 

changes in the protected landscape. 
 

This study provides some important lessons. First, additional and improved 

management efforts are necessary to alleviate the effects of anthropogenic 

activities inside the landscape because it is a nationally and naturally 

significant area. Aside from the mentioned studies stating that disturbances 

still occur in different terrestrial protected areas in the Philippines, this study 

also confirmed that there has been an apparent ineffective protected area 

management in the country. The conduct of land cover change analysis and 

detection is significant in telling the current state of MPPMNGPL in terms of 

the change in its land covers, which also applies to other terrestrial protected 

areas. Hence, the study agrees with several studies claiming how the GEE, 

GIS and remote sensing, when used collaboratively and effectively, can 

provide an ample amount of useful and accurate information. 
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Furthermore, the results of this study can be used by the Protected Area 

Management Board and stakeholders of MPPMNGPL in revising, updating, 

or modifying their protected area management plans. Further research about 

the land cover changes in the study area must be conducted for more in-depth 

results. 
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