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Abstract 
 

Owing to the escalating environmental and social problems linked to climate change 

and the hastily depleting stock of hydrocarbon-based fuels, renewable power 

generation modes have attained massive prominence. Wind power is an important 

renewable energy generation technology that contributed to 5% of the planet’s power 

generation in 2020. However, for sustaining the Paris Agreement targets, the global 

wind power generation sector necessitates evolving at a fleeter pace. To expand the 

green switch of the worldwide power generation businesses, wind farms are expected 

to remain financially more advantageous than fossil fuel-based power plants. The 

present work focused on elevating the annual profit of wind farms by employing an 

amended genetic algorithm (GA). A fresh approach to dynamically apportioning the 

crossover and mutation prospects for a GA-enabled profit growth algorithm was 

suggested to amplify the capability of the GA. Three dissimilar terrain conditions with 

diverse obstruction configurations and a randomly generated non-uniform wind flow 

pattern were used for assessing the competence of the proposed algorithm for profit 

maximization. The results showed that the annual yields for Terrain Layouts 1, 2 and 

3 obtained by the amended GA were higher by 10.34, 5.09 and 0.51%, respectively, 

than the typical one, which substantiated the superior proficiency of the former.  
 

Keywords: annual profit, artificial intelligence, genetic algorithm, wind power 

 

 

1. Introduction 

 

The continual discharge of greenhouse gases into the atmosphere because of 

human actions is responsible for escalating the average surface air temperature 

and anomalous meteorological conditions triggering worldwide climate 
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change (Obama, 2017). The fragment of renewable energy in inclusive power 

generation has broadened significantly (Enerdata, 2020). The wind power 

generation (WPG) area has proceeded firmly in the past 20 years (British 

Petroleum Company, 2020). Comprehensive WPG competence is expected to 

reach 4,042 gigawatt (GW) by 2050 (Global Wind Energy Council and 

Greenpeace International, 2014).  

 

Along with low emission advantages, renewable energy solutions like WPG 

systems are needed to remain feasible by proposing economical generation 

costs through superior reliability and minimal cost of maintenance to facilitate 

the de-carbonization of worldwide energy systems to a greater extent 

(Nicholas et al., 2020). The weighted average of global onshore wind project 

installed cost per W declined profoundly from 4.88 USD in 1983 to 1.38 USD 

in 2017 while the auction price of wind power in 2020 to 2022 is expected to 

be within the range of 0.06 USD/kWh to 0.10 USD/kWh, which is reasonably 

competitive to fossil fuel cost (International Renewable Energy Agency, 

2018).  

 

Internationally, studies have been conducted to lessen the WPG expense and 

realize the carbon neutrality target proposed in the 2015 Paris Accord 

(Bhattacharjee et al., 2021). Because of the calculating competence, artificial 

intelligence (AI) has been utilized to resolve different engineering 

optimization challenges including the WPG outlay minimization problem 

(Jana and Bhattacharjee, 2017; Duggirala et al., 2018; Bhattacharjee et al., 

2021). A neural network-abetted genetic algorithm (GA) was implemented to 

foresee WPG outlay (Huang, 2007). GA was employed for wind farm design 

in Gökçeada Island, Turkey (Şişbot et al., 2010). Several possible locations 

for offshore WPG and their economic practicability were examined (Mani 

Murali et al., 2014). Another study quantified the offshore WPG possibility in 

India by employing the oceansat-2 scatterometer (OSCAT) orbiter reports 

(Nagababu et al., 2016). Assessment of the offshore WPG capacity and 

optimization of the generation expenditure in the Indian oceanfront region was 

accomplished by Singh and Kumar (2018). Wilson et al. (2018) applied 

evolutionary algorithms to curtail the WPG expenditure with different flow 

scenarios. Wind farm design was improved with vector regression and GA 

with the premeditation of correlation within land proprietors (Ju et al., 2019). 

A revised most valuable player algorithm was developed by Ramli and 

Bouchekara (2020) for wind farm design with a minimal generation expense. 

A large offshore WPG layout for the western seashore of Gujrat state of India 

was appraised pertaining to the climate study and generation expenditure was 
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assessed (Kumar et al., 2020). In 2021, GA was used in wind farm design 

accompanied by particle swarm optimization tactics (Roy and Das, 2021). 

 

Although a few AI-backed algorithms have been expended for wind farm 

design over the years, further innovative reformations of the said algorithms 

are yet to be investigated for optimization method enhancement. The current 

study was directed to expand the yearly profit of WPG farms using an 

amended GA-based optimization approach. GA enhances a binary genome in 

which every gene signifies the existence or nonexistence of a wind turbine 

(WT) in every unit of the two-dimensional matrix; hence, both improving the 

count of WTs and their distinct locations (Wilson et al., 2018). Profit 

expansion of renewable power generation projects is a critical process to boost 

commercial operability and support the global green progression of power 

generation enterprises. An advanced amendment for assigning the possibilities 

of crossover and mutation was aimed to improve the related goal. The 

solutions attained through the enhanced GA were contrasted with the results 

achieved by the typical GA with static methods for assigning factors of 

crossover and mutation for assessing the comparative efficiency. 

 

 

 

2. Methodology 

 

2.1 Objective Formulation 

 

In line with the concept of aerodynamics, the kinetic energy generated through 

a WT was estimated using Equation 1 (Wu and Wang, 2012). 

 

 

 

 

where P denotes the power obtainable for withdrawal by WT; ρ signifies the 

air density; A represents the swept area; ϑ stands for the airspeed; Cp 

symbolizes the Betz coefficient; and θ specifies the alignment error (Wu and 

Wang, 2012; Bhattacharjee et al., 2021). The current research was directed to 

boost the annual profit of wind farms. Maximization of annual profit can 

support the financial sustainability of the WPG projects. Increased 

sustainability can help in the green transition of electricity generation 

businesses. This objective function is more reliable than optimizing the 

generation expenditure or energy yield separately. To enable global 

(1) P = 
1

2
ρAϑ

3
Cpcosθ 
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communities to reduce the carbon footprint of conventional thermal power 

generation units, present-day WPG farms are required to generate the 

maximum amount of power at an economical generation outlay. The annual 

profit of wind farms was computed using Equation 2 (Huang, 2007).  

 

 

 

where O is the annual profit of the farm; F is the selling price of one unit of 

electricity; C is the generation cost of one unit of power; and G is the annual 

generated electricity. The annual profit was calculated in USD while the 

selling price and WPG cost per unit of wind power were computed in 

USD/kWh. Annual generated power was calculated in kWh. The WPG cost 

was calculated following the objective function postulated by Wilson et al. 

(2018). The optimization process involved in the current work was designed 

to compute the unit generation expenditure and the energy yield 

simultaneously for a certain WPG farm design. Several randomly generated 

layout designs were compared parallelly to augment the yearly profit of the 

farm through AI-enabled methodologies as per Equation 2 after the calculation 

of the generation outlay and the power output. A randomly generated annual 

wind-flow form as mentioned in a test case scenario used by Wilson et al. 

(2018) was applied in the current work (Figures 1 and 2). 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Considered wind flow pattern 
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Figure 2. Considered percentage occurrence of wind flow 

 

In Figure 2, the percentage occurrence of wind flow signifies the directional 

dissemination of airflow over a year and is important in evaluating the 

estimated annual power generation capacity of any WPG farm. Three 

dissimilar terrain conditions with different obstacle configurations were 

considered in the present research to raise the annual profit of the WPG 

project. The terrain layouts are shown in Figures 3-5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Terrain Layout 1 of 4,000 × 4,000 m with  

one obstruction of 1,200 × 800 m 
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Figure 4. Terrain Layout 2 of 4,500 × 4,500 m with  

one obstruction of 2,200 × 2,600 m 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Terrain Layout 3 of 5,000 × 5,000 m with  

one obstruction of 1,000 × 500 m 

 

The obstacles are marked in red, while the available terrain land for WT 

placement are highlighted in green. The considered optimization algorithms 

were designed in such a way that no WT can be placed inside the obstacle 

area. The deliberation of obstacles enabled the optimization process to address 

practical issues related to land procurement and other technical difficulties. 

Three dissimilar layouts with different obstacle sizes were employed to assess 
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the relative efficiency of the proposed optimization approaches with better 

assurance. 

 

2.2 Proposed Algorithm 

 

GA is a metaheuristic exploring system that advises solutions for optimization 

work by simulating the development of natural partiality (Turing, 2004). It has 

been executed in numerous technical branches of learning for solving 

decision-building problems (Jana and Bhattacharjee, 2017; Abdullah, 2020; 

Belyaev and Sumenkov, 2021). The essential phases of GA are as follows 

(Jana and Bhattacharjee, 2017): 1) establishing vital components like 

population measure, reappearance level, prospects for crossover and mutation 

procedures; 2) deriving the chromosomes indiscriminately; 3) assessing the 

fittingness of distinctive components; 4) starting the crossover activity; 5) 

completing the mutation practice; 6) weighing the relevance of the 

contemporary entities transformed by crossover and mutation stratagems; and 

7) postulating the most enhanced upshot deeming the selection-makers 

attachment. 

  

In this present optimization scenario, a WPG farm was split into several small-

scale cells. Every cell in the WPG farm grid could have only two potential 

situations: holds a WT (denoted by bit 1) or does not comprise a WT 

(characterized by bit 0). Thus, for a 20 × 20 matrix, a binary sequence with 

400 bits can be formed to characterize the presence of the WTs in the WPG 

farm. There can be 2400 probable situations to assess involving enormous 

exploration space (Huang, 2007). For the binary chromosome formation 

ability, GA was employed in the current study with a tournament scale of four 

for faster and intelligent handling of the optimization process related to the 

WPG farm design. 

 

In consort with the recognized stratagem of unvarying values, this work 

exercised a novel dynamical course for appointing the factors of crossover and 

mutation. For the dynamic approach, the crossover possibility was considered 

(Equation 3). 
 

 

 

where ci denotes the non-linearly mounting crossover chance; c1 and c2 are the 

boundaries of the crossover ratio; Gi is the present reappearance number; and 

Gmax is the maximum reappearance number. For the dynamic method, the 

mutation prospect was computed using Equation 4. 

(3) c
i
 = ඕඑc

1
+ c

2
ඒ 2e ඖ+඗ඕ(c

1
– c

2
) 2e ඖඑG

i
G

max
e ඒ6඘ 
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where mi is the non-linearly escalating mutation possibility, and m1 and m2 are 

the confines of the mutation fraction. MATLAB® (R2017a) (MathWorks, 

2017) was employed for necessary coding and the execution of the 

optimization trial of the current WPG farm design enhancement assignment. 

 

 

 

3. Results and Discussion 

 

GAs have been utilized several times for WPG farm design owing to their 

noticeable and acknowledged benchmarks when judged against other AI 

algorithms. In the present study, GA was applied to determine the possibility 

of positioning a WT in every single grid of the layout. The focus of the current 

study was on expanding the yearly profit of a WPG layout. Accompanied by 

the deliberation of the established stationary tactic, an innovative variable 

methodology for apportioning the fractions of crossover and mutation 

procedures of GA-founded WPG farm design optimization tactic. The values 

of several parameters linked to the deliberated algorithm are presented in 

Table 1. 

 

Table 1. Values of parameters deliberated for the proposed GA (Wilson et al., 2018) 

 

Factor Deemed value 

c1 0.6 

c2 0.4 

m1 0.05 

m2 0.03 

Populace size 20 

Extreme recurrence count 50 

 

The descriptions of the WPG farm needed for enhancing the yearly profit of 

the projected wind farm are shown in Table 2. The wake loss is a prominent 

aspect of power generation from WT as it reduces the accessible kinetic 

energy of the wind of the nearby WTs. To curtail the disadvantageous effect 

of wake loss, a specific space is essential to be sustained amid two nearby 

WTs for WPG unit design. 

 

 

 

(4) m
i
=ඕඑm

1
+ m

2
ඒ 2e ඖ+඗ඕ(m

1
– m

2
) 2e ඖඑG

i
G

max
e ඒ6඘ 
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Table 2. WT associated parameters (Wilson et al., 2018) 

 

Parameter Deemed value 

WT output 1,500 kW 

Blade diameter 77 m 

Space amid two adjacent WTs 308 m 

Least operational wind speed 12 km/h 

Highest operational wind speed 72 km/h 

Initial purchasing outlay per WT USD 750,000 

Expenditure per sub-station USD 8,000,000 

Yearly operative and repairs charge per WT USD 20,000 

Proportion of interest  3% 

Anticipated functioning lifespan 20 years 

 

The stationary values of crossover and mutation fractions were 0.4 and 0.05, 

respectively. The optimal locations of WTs obtained for three terrain layouts 

using the varying and static approaches for appointing the crossover and 

mutation proportions are exhibited in Figures 6-11. The optimal locations of 

the WTs are shown in red-colored circular dots. The algorithms were designed 

to place WTs within the bounds of the layouts and not to locate any WT within 

the obstacle regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6. Optimal WPG farm design for Terrain Layout 1 with stationary technique 
of assigning crossover and mutation probabilities 
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Figure 7. Optimal WPG farm design for Terrain Layout 1 with dynamic process of 

assigning crossover and mutation probabilities 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Optimal WPG farm design for Terrain Layout 2 with stationary technique 

of assigning crossover and mutation probabilities 
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Figure 9. Optimal WPG farm design for Terrain Layout 2 with dynamic process of 

assigning crossover and mutation probabilities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Optimal WPG farm design for Terrain Layout 3 with stationary technique 

of assigning crossover and mutation probabilities 
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Figure 11. Optimal WPG farm design for Terrain Layout 3 with dynamic process of 

assigning crossover and mutation probabilities 

 

The graphical representations of the WPG farm design attained by both the 

optimization approaches display the grid-like structures to maintain the 

adequate gap required for wake-associated kinetic energy loss minimization. 

This grid-like design approach would help the concerned decision-makers in 

obtaining the optimal count of WTs and their locations required for the annual 

profit maximization for the desired layout setting. An assessment of the 

optimal annual profits and count of WTs attained through both methods of 

assigning the potentials of crossover and mutation processes for all the terrain 

settings is presented in Table 3.  
 

Table 3. Assessment of optimal yearly profit and WT count 
 

Terrain setting 

Optimal outcomes attained by GA 

with static technique of allotting 

crossover and mutation 

probabilities 

Optimal outcomes attained by GA 

with dynamic technique of 

allotting crossover and mutation 

probabilities 

Yearly profit 

(USD) 
Count of WT 

 

Yearly profit  

(USD) 
 

Count of WT 

Terrain Layout 1 34,198 132 37,735 146 

Terrain Layout 2 42,119 156 44,265 169 

Terrain Layout 3 64,810 233 65,145 249 
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The evaluation results validated the pre-eminence of the projected dynamic 

method over the standard stationary one in apportioning the probabilities of 

crossover and mutation for every terrain setting since it achieved a higher 

annual profit as shown in Table 3. The enlarged cost-effectiveness of the WPG 

unit would help to increase the convalesced viability of the venture and 

support the development of emanation management for power generation 

businesses. 
 

Most of the research performed for the wind farm design optimization 

procedure focused on generation expenditure curtailment and yearly power 

generation capacity expansion (Chowdhury et al., 2012; Yang et al., 2019; 

Ramli and Bouchekara, 2020; Shin et al., 2020). The issue of the financial 

viability of the wind farm and the appliance of AI for solving such complex 

computing scenarios need to be studied with more attention to achieve the 

Paris Agreement targets as early as possible. This inspired the authors of the 

present study to enhance the annual profit of WPG farms. This work used the 

time-conditional feature of all constituents of the expenditure and offered a 

judicious depiction of the WPG industries. Furthermore, the accurate 

deliberation of flow form in this study affects the more precise computation 

of the annual profit of the possible WPG farm and influences the effectiveness 

of the planned AI-assisted optimization technique. 

 

 

 

4. Conclusion and Recommendation 

 

This work aimed to raise the annual profit of WPG farms for sustaining the 

green substitution of electricity generation trades and reaching carbon 

neutrality goals. A proportional work of standard constant and a proposed 

dynamic approach for allocating the potentials of crossover and mutation 

factors for the GA-centered profit development for the wind farm was offered 

in the existing research. The results confirmed the heightened the 

appropriateness of the dynamic process over the typical static way for 

augmenting the wind farm design with supreme yearly profit. The proposed 

method can sustain the wind power trades in organizing a cost-effective and 

feasible WPG site with the rational deliberation of numerous expense-allied 

elements and inconstant airflow circumstances. The existing research can 

instigate novel potentials for WPG design and the economic possibility of 

wind power, which can benefit the worldwide attempt to curtail the carbon 

footprint of the energy generation industries. In the future, more cost functions 

linked to different geographical and economic conditions can be considered 
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with varied WT-specific parameters for better interpretation of the WPG farm 

design enhancement process. Moreover, other AI methodologies can be used 

for comparative analysis of their effectiveness in improving the WPG farm 

design. 
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