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Abstract 
 

Accidents occurrence in metal lathe machining operations in industrial workshops 

often cost organizations billions of dollars while injured workers and families are 

faced with financial and emotional burdens. Studies revealed that the fly-out accident 

is the most probable accident that occurs during metal lathe machining operations. 

The uncertainty surrounding its occurrence is rarely reported. This study, therefore, 

modeled the uncertainty surrounding the occurrence of a fly-out accident during metal 

lathe machining operations and its corresponding consequences using the Bayesian 

belief network (BBN). Fly-out accident causal factors were identified representing the 

parent nodes with two states each. Two child-node scenarios were modeled on 

Bayesian belief influence diagrams, namely the fly-out accident with two states (yes 

and no) and the consequences of the fly-out accident with three states (fatal, serious 

and minor). Seven causal factors of the fly-out accident were identified (chuck-related 

fault, tool-post failure, workpiece holding fault, coolant fault, wrong operating speed, 

safety-related guards fault and wrong feed rate). Bayesian causal inference of fly-out 

accident was 0.708 and the fatal fly-out accident was 0.263. Bayesian diagnostic 

inference showed that chuck association fault and improper feed rate were significant 

causal factors influencing the occurrence of a fly-out accident, fatal fly-out accident 

and serious fly-out accident, while the occurrence of a minor fly-out accident was 

affected by coolant fault during machining operations. The study identified areas of 

safety concerns that may be used for the development of Machine Workshop Safety 

Management Systems toward sustainable, safe, and effective machine workshop 

operations.  
 

Keywords: Bayesian belief network, causal factors, diagnostic inference, fly-out,  

  probabilistic risk assessment  
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1. Introduction 

 

Human beings by default are at risk of making mistakes and neglecting certain 

safety regulations and policies, which may have a negative effect on them, the 

company’s employees and its machinery, and the environment, can potentially 

lose their lives, assets and license. However, human errors are only 

components of protection as system, equipment and other variables often 

function as ties to a safe machining process. The exponential introduction of 

modern technologies has radically altered the activities of machining 

operations in many industrial sectors. Based on this notion, there is a need for 

a strong balance of technological and human subsystems (Kletz, 1999). This 

is premised on the general concept of systems theory emphasizing that a 

failure of an element can jeopardize the whole system. Such systemic failure 

can lead to significant risks not just to those in the organization but also to the 

general populace. Similarly, accidents arising from lathe machining 

operations have often turned out to be particularly complex and more severe 

in most cases.  

 

Safety is a critical issue for lathe machinists alike. In Nigeria, the lathe 

machines in small and medium enterprises offer approximately 8% job 

opportunity and they contribute to the occurrence of workplace injuries and 

accidents. Similarly, in the United States, the lathe machine is the source of 

approximately 10% of workplace injuries and accidents (Etherton et al., 

1981). In big production facilities, sudden changes in accidents and safety 

offer an exceptional threat to the existence of an organization in terms of 

protecting its greatly revered assets like properties and lives. A few studies 

investigated the lathe machining safety and the occurrence of lathe accidents. 

Suryoputro et al. (2017) employed the systematic human action reliability 

procedure (SHARP), hazard identification and risk assessment (HIRA), fault 

tree analysis (FTA) and failure mode and effect analysis (FMEA) methods to 

analyze human reliability and understand lathe machine safety. Based on the 

analysis, two causal factors (machine and human factors) were modeled on 

the fault tree diagram while HIRA and FMEA only considered three events 

(power transmission parts, moving section and operating point section) and 

were analyzed on the lathe machine during operation. A major aspect missing 

in the said study was the systemic analysis of lathe machining system, which 

culminated in identifying only two causal factors of the lathe accidents. To 

bridge this gap, the current study explored the lathe machining system with a 

specific focus on the most probable lathe accident, which is the fly-out 

accident.  
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Sachdeva et al. (2011) also employed fuzzy logic methodology to predict the 

level of musculoskeletal disorders (MDs) among lathe machine workers. The 

study centered only on the health state of the lathe machine worker. The 

simulation of the fuzzy logic model helped in improving the health of workers 

and reducing absenteeism caused by prevalent MDs. Over four decades ago, 

Etherton et al. (1981) used three methods (review of injury reports, human 

factors analysis and fault tree procedures) to determine the effective injury 

control for metal cutting lathe machine operators and interestingly, the results 

are still relevant today. The analysis of results showed that workpiece, chips 

and workholding devices were major sources of injury while secondary tasks 

(setting up, loading/unloading, measuring, fitting/deburring, polishing and 

cleaning/clearing) were found to be more hazardous than they were generally 

recognized. A major similarity of this study with the current one is the 

identification of causal factors of injuries during lathe machining, modeling 

the causal factors on a fault tree diagram and identifying safety measures. A 

key difference is that the fault tree developed was not used to evaluate the 

probability of occurrence of the lathe injury/accident. 
 

Furthermore, Akinyemi et al. (2015) identified the most probable accident 

during lathe machining operation as the fly-out accident. FTA was used to 

determine the likelihood of fly-out accident occurrence. In using FTA, the 

probability of the top event or of any intermediate event corresponding to the 

logical structure was calculated on the basis of the failure probabilities that 

were associated with the failure events of the basic components (Amrin et al., 

2018). Meanwhile, Jorgensen (2016) stated that accident occurrence modeling 

consists of three major elements, namely description of causes, activities of 

causes leading to the accident and the consequences or damages of such 

accident. FTA used by Akinyemi et al. (2015) successfully described the 

causes of fly-out accidents and activities of causes leading to the accidents’ 

occurrence, but it was unable to model the consequences or damages caused 

by the said accidents. 

 

Bayesian belief network (BBN) is a way of modeling accidents and their 

corresponding consequences or damages (Akinyemi and Adebiyi, 2016). In 

Bayesian modeling, uncertainty or “degree of belief” is quantified utilizing 

probability. Data observed are employed to update the prior information or 

beliefs to obtain posterior information or beliefs. Engineers often have to 

analyze accident data to estimate the level of safety at different socio-technical 

systems to identify hazardous (unsafe) conditions and evaluate the 

effectiveness of safety countermeasures. BBN has greatly found usefulness in 

engineering specifically in the analysis of accident data of socio-technical 



O. O. Akinyemi et al. / Mindanao Journal of Science and Technology Vol. 20 (2) (2022) 71-87 

74 
 

systems. BBN was previously used to predict occupational accident statistics 

(Marcoulaki et al., 2012), analyzed the causation of road accidents (Zou and 

Yue, 2017), examined nuclear reactor severe accidents (Zheng et al., 2017) 

and modeled the probability of occurrence and consequence of runway 

accidents (Akinyemi and Adebiyi, 2016). 

 

Similarly, Akinyemi et al. (2019) employed BBN to model the occurrence of 

a road traffic accident in Southwest Nigeria and predict the probability of its 

occurrence and its corresponding consequences. Interestingly, Delen et al. 

(2019) developed a BBN-driven probabilistic model which successfully 

predicted the risk of individual students’ attrition from a higher learning 

institution. Miraballes et al. (2019) also used BBN to assess the possibility of 

a farm becoming infested with cattle disease known as Rhipicephalus 

microplus, which is caused by the introduction of tick-infested cattle. 

Jitwasinkul et al. (2016) noted that BBN has the capability to model expected 

consequences of uncertainty in the Thai construction industry; this was 

adopted to evaluate the safe work behaviors in the said industry. Also, 

Washington et al. (2019) developed a framework based on BBN, which 

provided an approach for capturing the uncertainty in the potential 

consequential outcomes of an identified failure in remotely piloted aircraft 

systems. Other researchers who worked on the application of BBN to risk 

evaluation of various facets of life include Krynski and Tenenbaum (2007), 

Fenton and Neil (2011), Li et al. (2012), Wang et al. (2015), Hadikusumo et 

al. (2017), Liao et al. (2018), Azar and Dolatabad (2019) and Zhang et al. 

(2019).  
 

The similarity of this present study with these past and related works is the use 

of BBN to evaluate accidents and risk in socio-technical systems. However, 

previous work on the use of BBN for the safety modeling of lathe machine 

operations is scarce or rarely reported. While statistical analysis of accidents 

has become suggestive in quantifying accidents due to the uniqueness of every 

event leading to accidents and lack of available information (Zarikas et al., 

2013), the BBN technique is used for quantifying uncertainties that require a 

combination of data and experts’ judgment in addition to developing models 

from the information enabling the factoring of casual relationships and 

interdependencies. This research, therefore, used BBN to model a combination 

of interdependencies of causal factors and experts’ judgment to evaluate the 

probability of occurrence of a fly-out accident during lathe machining 

operation and the probability of occurrence of its corresponding consequences 

or damages. 
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Identification of Bayesian variables of the 

system of interest 

Construction of BBN influence diagram 

Estimation of prior belief of Bayesian variables 

Generation of the Conditional Probability 

Table (CPT) of Bayesian variable 

BBN inference 

BBN diagnostic inference 

2. Methodology 

 

The BBN had the following steps as shown in Figure 1 below. Before the 

construction of the BBN diagram, understanding of the system was sacrosanct. 

This enabled the identification of Bayesian variables (and their states) that 

depicted the system.  The BBN diagram, called the influence diagram, was the 

directed acyclic graph that showed the causal relationship between the child 

nodes and the parent nodes. The parent nodes were the Bayesian variables 

(causal factors) that determined the values of the child node (accident and or 

consequences of accident). An excellent understanding of the system to be 

modeled was necessary to develop an influence diagram that represented the 

system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The flowchart of BBN methodology 

 

The estimation of the prior belief by Bayesian variables involved the 

estimation of prior probability of the parent nodes. At this stage, the selection 

of the states of the nodes (both child and parent) was carefully carried out. 

This estimation was achieved through prior knowledge, availability of data 

and probability distribution function. 

 

Generating the conditional probability table (CPT) for the Bayesian variable 

involved defining a CPT for the child nodes. In this stage, a CPT was 
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generated for each state of the child node. BBN was made operational by 

means of a set of CPT that underlay each node. CPT expressed the belief of 

how the nodes were related to each other while the degree of belief of certainty 

was represented by a score. The generation of the CPT score using the degree 

of certainty estimation was the subject matter experts’ opinion. 

 

When CPTs were added to the influence diagram, the BBN was formed. 

Bayesian network inference is the causal inference imposed by the Bayesian 

variable. It is a probability process of drawing an inference from causes, and 

it is top-down (Akinyemi and Adebiyi, 2016). In socio-technical system 

accident modeling, BBN inference involved developing an expression for the 

probability of accident occurrence when the states of conditions of hazards or 

causal factors were known. The developed BBN model consequently became 

a predictive model for accident occurrence. Based on these predictions, 

accident preventive measures may be taken to mitigate the likelihood of an 

accident occurring in socio-technical systems. 

 

BBN diagnostic inference is a probabilistic inference process of drawing a 

cause from the conclusion and it is a bottom-up inference as opposed to BBN 

inference, which is top-down. Its objective is to obtain the probability of 

occurrence of parent nodes causing the occurrence of the child node.  

 

2.1 Identification of Bayesian Variables of the Lathe Machine System and  

     Construction of the Bayesian Network Influence Diagram 

 

In this study, Bayesian variables were the causal factors leading to the fly-out 

accident and these variables were identified by Akinyemi et al. (2015). Causal 

factors leading to fly-out accidents were categorized into seven (Table 1) 

(Akinyemi et al., 2015). It ought to be stated that these causal factors were 

unique and independent to each other even as their prevalence would have 

their respective consequences. BBN was engaged to evaluate the probability 

of occurrence of the fly-out accident and its corresponding consequences. Two 

Bayesian influence diagrams were developed for the relationship between 

states of fly-out accident causal factors (parent nodes) and states of fly-out 

accident (child node); and states of fly-out accident causal factors (parent 

nodes) and its consequences (child node). These two influence diagrams were 

developed using Bayesian network software (Netica version 6.09) (Norsys 

Software Corporation, n.d.). 
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2.2 Estimation of Prior Belief of Bayesian Variables and Generation of the  

      Conditional Probabilities of Child Node Variables 

 

The prior probability for the occurrence of the seven causal factors, obtained 

from Akinyemi et al. (2015), is given in Table 1 with their corresponding 

states.   

 

Table 1. States of parent nodes and their corresponding prior probabilities  

 

S/N Causal factors/variables Symbols States 
Prior probabilities 

(%) 

1 Chuck association fault CAF 
Okay 

Faulty 

28 

72 
     

2 
Workpiece holding 

failure 
WHF 

N-Fail 

FLRE 

95 

5 
     

3 Tool-post fault TPF 
Okay 

Faulty 

96 

4 
     

4 Coolant fault CF 
Okay 

Faulty 

99 

1 
     

5 Operating speed OS 
Proper 

Improper 

98 

2 
     

6 Safety guards fault SGF 
Okay 

Faulty 

85 

15 
     

7 Wrong feed rate IFR 

Human 

reliability (HR) 

Human error 

(HE) 

90 

 

10 

 

The CPT was developed for the two child nodes scenarios using the experts’ 

judgments. Most of the experts employed for this study were drawn from a 

university and manufacturing industry workforce. Two were academic staff 

that examined workshop practice courses for over 10 years. Two were 

technologists manning a university engineering workshop for over 12 years. 

Four have, at least, eight years of experience as factory lathe machinists and 

two were local lathe machinists who had been doing the job for more than five 

years. The other three were senior workshop engineers drawn from a 

manufacturing industry. It should be noted that the two child nodes scenarios 

were the occurrence of fly-out accident and the occurrence of the 

consequences of a fly-out accident. Probability expression in a CPT was 

substituted by probability measures between 0 and 100% (Akinyemi et al., 

2019). Table 2 shows the CPT developed with the aid of subject matter 

experts’ opinions for the child node scenario of occurrence of the 

consequences of a fly-out accident. 
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 Table 2. CPT of the consequences (child node) of fly-out accident 

 
  Fly-out accident causal factors states 

(Parent nodes) 

 Conditional probability 

(consequences) 

S/N CAF WHF TPF CF OS SGF IFR Fatal Major Minor 

1 Okay N-Fail Okay Okay Proper Okay HR   1   4 95 

2 Okay N-Fail Okay Okay Proper Okay HE   5 10 85 

3 Okay N-Fail Okay Okay Proper Faulty HR   5 10 85 

4 Okay N-Fail Okay Okay Proper Faulty HE 15 20 65 

5 Okay N-Fail Okay Okay Improper Okay HR 30 45 25 

6 Okay N-Fail Okay Okay Improper Okay HE 50 30 20 

7 Okay N-Fail Okay Okay Improper Faulty HR 30 50 20 

8 Okay N-Fail Okay Okay Improper Faulty HE 55 30 15 

9 Okay N-Fail Okay Faulty Proper Okay HR   1   4 95 

10 Okay N-Fail Okay Faulty Proper Okay HE 10 20 70 

11 Okay N-Fail Okay Faulty Proper Faulty HR 10 20 70 

12 Okay N-Fail Okay Faulty Proper Faulty HE 15 20 65 

13 Okay N-Fail Okay Faulty Improper Okay HR 30 40 30 

14 Okay N-Fail Okay Faulty Improper Okay HE 50 30 20 

15 Okay N-Fail Okay Faulty Improper Faulty HR 55 30 15 

16 Okay N-Fail Okay Faulty Improper Faulty HE 60 30 10 

17 Okay N-Fail Faulty Okay Proper Okay HR 33.4 33.3 33.3 

18 Okay N-Fail Faulty Okay Proper Okay HE 35 35 30 

19 Okay N-Fail Faulty Okay Proper Faulty HR 35 35 30 

20 Okay N-Fail Faulty Okay Proper Faulty HE 35 35 30 

21 Okay N-Fail Faulty Okay Improper Okay HR 35 40 25 

22 Okay N-Fail Faulty Okay Improper Okay HE 60 30 10 

23 Okay N-Fail Faulty Okay Improper Faulty HR 30 50 20 

24 Okay N-Fail Faulty Okay Improper Faulty HE 60 30 10 

25 Okay N-Fail Faulty Faulty Proper Okay HR 33.4 33.3 33.3 

26 Okay N-Fail Faulty Faulty Proper Okay HE 35 35 30 

27 Okay N-Fail Faulty Faulty Proper Faulty HR 35 35 30 

28 Okay N-Fail Faulty Faulty Proper Faulty HE 35 35 30 

29 Okay N-Fail Faulty Faulty Improper Okay HR 30 60 10 

30 Okay N-Fail Faulty Faulty Improper Okay HE 60 30 10 

31 Okay N-Fail Faulty Faulty Improper Faulty HR 30 60 10 

32 Okay N-Fail Faulty Faulty Improper Faulty HE 60 30 10 

33 Okay FLRE Okay Okay Proper Okay HR 25 25 20 

34 Okay FLRE Okay Okay Proper Okay HE 30 30 40 

35 Okay FLRE Okay Okay Proper Faulty HR 30 35 35 

36 Okay FLRE Okay Okay Proper Faulty HE 45 30 25 

37 Okay FLRE Okay Okay Improper Okay HR 30 60 10 

38 Okay FLRE Okay Okay Improper Okay HE 70 20 10 

39 Okay FLRE Okay Okay Improper Faulty HR 30 60 10 

40 Okay FLRE Okay Okay Improper Faulty HE 70 20 10 

41 Okay FLRE Okay Faulty Proper Okay HR 30 35 35 

42 Okay FLRE Okay Faulty Proper Okay HE 47 33 20 

43 Okay FLRE Okay Faulty Proper Faulty HR 30 40 30 

44 Okay FLRE Okay Faulty Proper Faulty HE 47 33 20 

45 Okay FLRE Okay Faulty Improper Okay HR 30 60 10 

46 Okay FLRE Okay Faulty Improper Okay HE 65 25 10 

47 Okay FLRE Okay Faulty Improper Faulty HR 30 60 10 

48 Okay FLRE Okay Faulty Improper Faulty HE 65 25 10 

49 Okay FLRE Faulty Okay Proper Okay HR 30 40 30 

50 Okay FLRE Faulty Okay Proper Okay HE 45 35 20 

51 Okay FLRE Faulty Okay Proper Faulty HR 30 40 30 

52 Okay FLRE Faulty Okay Proper Faulty HE 45 35 20 

53 Okay FLRE Faulty Okay Improper Okay HR 30 60 10 

54 Okay FLRE Faulty Okay Improper Okay HE 70 20 10 

55 Okay FLRE Faulty Okay Improper Faulty HR 25 65 10 

56 Okay FLRE Faulty Okay Improper Faulty HE 75 15 10 

57 Okay FLRE Faulty Faulty Proper Okay HR 30 50 20 

58 Okay FLRE Faulty Faulty Proper Okay HE 60 30 10 

59 Okay FLRE Faulty Faulty Proper Faulty HR 30 50 20 

60 Okay FLRE Faulty Faulty Proper Faulty HE 75 15 10 

61 Okay FLRE Faulty Faulty Improper Okay HR 30 60 10 
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Table 2 continued.            

 

62 Okay FLRE Faulty Faulty Improper Okay HE 75 15 10 

63 Okay FLRE Faulty Faulty Improper Faulty HR 30 60 10 

64 Okay FLRE Faulty Faulty Improper Faulty HE 75 15 10 

65 Faulty N-Fail Okay Okay Proper Okay HR 30 60 10 

66 Faulty N-Fail Okay Okay Proper Okay HE 75 15 10 

67 Faulty N-Fail Okay Okay Proper Faulty HR 25 65 10 

68 Faulty N-Fail Okay Okay Proper Faulty HE 75 15 10 

69 Faulty N-Fail Okay Okay Improper Okay HR 20 70 10 

70 Faulty N-Fail Okay Okay Improper Okay HE 75 15 10 

71 Faulty N-Fail Okay Okay Improper Faulty HR 25 55 20 

72 Faulty N-Fail Okay Okay Improper Faulty HE 75 15 10 

73 Faulty N-Fail Okay Faulty Proper Okay HR 30 50 20 

74 Faulty N-Fail Okay Faulty Proper Okay HE 60 30 10 

75 Faulty N-Fail Okay Faulty Proper Faulty HR 40 50 10 

76 Faulty N-Fail Okay Faulty Proper Faulty HE 70 20 10 

77 Faulty N-Fail Okay Faulty Improper Okay HR 30 50 20 

78 Faulty N-Fail Okay Faulty Improper Okay HE 70 20 10 

79 Faulty N-Fail Okay Faulty Improper Faulty HR 30 60 10 

80 Faulty N-Fail Okay Faulty Improper Faulty HE 80 15   5 

81 Faulty N-Fail Faulty Okay Proper Okay HR 40 50 10 

82 Faulty N-Fail Faulty Okay Proper Okay HE 70 20 10 

83 Faulty N-Fail Faulty Okay Proper Faulty HR 30 60 10 

84 Faulty N-Fail Faulty Okay Proper Faulty HE 70 20 10 

85 Faulty N-Fail Faulty Okay Improper Okay HR 40 30 30 

86 Faulty N-Fail Faulty Okay Improper Okay HE 50 40 10 

87 Faulty N-Fail Faulty Okay Improper Faulty HR 50 40 10 

88 Faulty N-Fail Faulty Okay Improper Faulty HE 70 20 10 

89 Faulty N-Fail Faulty Faulty Proper Okay HR 30 40 30 

90 Faulty N-Fail Faulty Faulty Proper Okay HE 60 30 10 

91 Faulty N-Fail Faulty Faulty Proper Faulty HR 60 30 10 

92 Faulty N-Fail Faulty Faulty Proper Faulty HE 70 20 10 

93 Faulty N-Fail Faulty Faulty Improper Okay HR 30 60 10 

94 Faulty N-Fail Faulty Faulty Improper Okay HE 70 20 10 

95 Faulty N-Fail Faulty Faulty Improper Faulty HR 55 35 10 

96 Faulty N-Fail Faulty Faulty Improper Faulty HE 80 15   5 

97 Faulty FLRE Okay Okay Proper Okay HR 40 30 30 

98 Faulty FLRE Okay Okay Proper Okay HE 70 20 10 

99 Faulty FLRE Okay Okay Proper Faulty HR 45 45 10 

100 Faulty FLRE Okay Okay Proper Faulty HE 70 20 10 

101 Faulty FLRE Okay Okay Improper Okay HR 50 40 10 

102 Faulty FLRE Okay Okay Improper Okay HE 75 15 10 

103 Faulty FLRE Okay Okay Improper Faulty HR 70 20 10 

104 Faulty FLRE Okay Okay Improper Faulty HE 80 15   5 

105 Faulty FLRE Okay Faulty Proper Okay HR 70 20 10 

106 Faulty FLRE Okay Faulty Proper Okay HE 80 15   5 

107 Faulty FLRE Okay Faulty Proper Faulty HR 30 60 10 

108 Faulty FLRE Okay Faulty Proper Faulty HE 70 20 10 

109 Faulty FLRE Okay Faulty Improper Okay HR 25 65 10 

110 Faulty FLRE Okay Faulty Improper Okay HE 75 15 10 

111 Faulty FLRE Okay Faulty Improper Faulty HR 25 65 10 

112 Faulty FLRE Okay Faulty Improper Faulty HE 85 10   5 

113 Faulty FLRE Faulty Okay Proper Okay HR 30 60 10 

114 Faulty FLRE Faulty Okay Proper Okay HE 70 20 10 

115 Faulty FLRE Faulty Okay Proper Faulty HR 25 65 10 

116 Faulty FLRE Faulty Okay Proper Faulty HE 75 20   5 

117 Faulty FLRE Faulty Okay Improper Okay HR 20 70 10 

118 Faulty FLRE Faulty Okay Improper Okay HE 80 15   5 

119 Faulty FLRE Faulty Okay Improper Faulty HR 35 55 10 

120 Faulty FLRE Faulty Okay Improper Faulty HE 85 10   5 

121 Faulty FLRE Faulty Faulty Proper Okay HR 30 60 10 

122 Faulty FLRE Faulty Faulty Proper Okay HE 70 20 10 

123 Faulty FLRE Faulty Faulty Proper Faulty HR 40 50 10 

124 Faulty FLRE Faulty Faulty Proper Faulty HE 80 15   5 

125 Faulty FLRE Faulty Faulty Improper Okay HR 30 60 10 
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Table 2 continued. 

CAF

Okay
Faulty

28.0
72.0

TPF

Okay
Faulty

96.0
4.00

CF

Okay
Faulty

99.0
1.00

OS

Proper
Improper

98.0
2.00

FlyOutAccident

Yes
No

70.8
29.2

WHF

NoFailure
Failure

95.0
5.00

SGF

Okay
Faulty

85.0
15.0

IFR

HumanReliability
HumanError

90.0
10.0

 

 

126 Faulty FLRE Faulty Faulty Improper Okay HE 75 20   5 

127 Faulty FLRE Faulty Faulty Improper Faulty HR 30 60 10 

128 Faulty FLRE Faulty Faulty Improper Faulty HE 85 10   5 

Failure = FLRE; no failure = N-Fail; HR = human reliability; HE = human error; CAF = chuck association 

fault; WHF = work piece holding fault; TPF = tool post fault; CF = coolant fault; OS = operating speed; SGF 

= safety guard fault; and IFR = improper feed rate 

 

 

 

3. Results and Discussion 

 

3.1 Bayesian Network Causal Inferences 

 

From the Bayesian network causal inference, the probability of occurrence of 

the fly-out accident was 70.8% while that of the no fly-out accident was 29.2% 

(Figure 2). The probability of occurrence of the fatal fly-out accident was 

26.3%, the serious fly-out accident was 41.8% and the minor fly-out accident 

was 32.0% as (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Bayesian causal inference of occurrence of fly-out accident of  

metal lathe machine operation 
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HumanReliability
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90.0
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Figure 3. Bayesian causal inference of occurrence of consequence of fly-out accident 

of metal lathe machine operation 

 

Akinyemi et al. (2015) employed FTA to evaluate the probability of 

occurrence of fly-out accidents which was 74.8%. Unfortunately, FTA was 

unable to evaluate the consequences of this accident. In this study, BBN was 

able to overcome this shortcoming by evaluating an appropriate probability of 

the fly-out accident, which was 70.8%, with the probabilities of its 

corresponding consequences as shown in Figure 3. This study was also in 

consonance with Jorgensen’s (2016) postulation that accident modeling must 

consist of three major elements, namely description of causes, activities of 

causes leading up to the accident and the consequences or damages attributed 

to the said accident. 

 

3.2 Bayesian Network Diagnostic Inferences 

 

The diagnostic inference determined the posterior probability of the fly-out 

accident causal factors and consequently, the critical fly-out accident causal 

factors were evaluated. Figures 4, 5 and 6 show the posterior probability of 

occurrence of the fly-out accident, fatal fly-out accident and serious fly-out 

accident, respectively. 

 

When the posterior probability obtained was compared with the prior 

probability, it was observed that there were changes in the values of the 
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CAF

Okay
Faulty

3.47
96.5

TPF

Okay
Faulty

95.3
4.70

CF

Okay
Faulty

99.0
1.00

OS

Proper
Improper

97.5
2.51

FlyOutAccident

Yes
No

 100
   0

WHF

NoFailure
Failure

93.9
6.09

SGF

Okay
Faulty

84.8
15.2

IFR

HumanReliability
HumanError

89.8
10.2

probability of occurrence of the parent nodes for the two child nodes scenarios. 

Profound changes were observed in the probability of occurrence of the fly-

out accident, namely probability of occurrence of CAF = faulty (increased by 

244.6%), OS = improper (increased by 25.5%), WHF = failure (increased by 

21.8%), TPF = faulty (increased by 17.5%) while marginal changes were 

noticed in the probability of occurrence of IFR = human error (increased by 

2%) and SGF = faulty (increased by 1.3%). Similarly, major changes were 

also seen in the cases of the occurrence of fatal fly-out and serious fly-out 

accidents. Notable changes were found in the probability of occurrence of 

CAF = faulty (increased by 266.4%) and IFR = human error (increased by 

115%), WHF = failure (increased by 48.4%), TPF = faulty (increased by 

19.2%), OS = improper (increased by 12%) while marginal changes were 

observed in the probability of occurrence of CF = faulty (increased by 5%) for 

fatal fly-out accident. In the same vein, notable changes were detected in the 

probability of occurrence of CAF = faulty (increased by 236.8%), OS = 

improper (increased by 33%) and SGF = faulty (increased by 10.7%) while 

marginal changes were observed in the probability of occurrence of TPF = 

faulty (increased by 6.25%) for the serious fly-out accident. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 4. Bayesian diagnostic inference of occurrence of fly-out accident of metal 

lathe machine operation (Fly-out accident = yes) 
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Figure 5. Bayesian diagnostic inference of occurrence of fatal fly-out accident of 

metal lathe machine operation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Bayesian diagnostic inference of occurrence of serious fly-out accident of 

metal lathe machine operation 
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Figure 7 displays the diagnostic inference for the occurrence of the minor fly-

out accident. The inference revealed the change in the posterior probability of 

occurrence of CF = faulty (increased by 12%). Other causal factors (parent 

nodes) did not have significant effects on the occurrence of minor fly-out 

accident. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Bayesian diagnostic inference of occurrence of minor fly-out accident of 

metal lathe machine operation 

 

While FTA showed that the event of the chuck association fault was the only 

notable causal factor that was sensitive to the occurrence of the fly-out 

accident (Akinyemi et al., 2015), Bayesian diagnostic inference showed that 

it was not only the chuck association fault that was sensitive to the occurrence 

of the fly-out accident but also to other causal factors, namely operating speed, 

workpiece holding failure and tool post fault. This meant that once the fly-out 

accident occurs, it is most likely that chuck association fault, operating speed, 

workpiece holding failure and tool post fault are the main significant causal 

factors. This is interestingly in consonance with the over 40-year-old study of 

Etherton et al. (1981) which identified chips and workholding devices as 

major causes of injuries among metal cutting lathe operators. Also, diagnostic 

inference showed that the occurrence of the fatal fly-out accident 

(consequence) was sensitive to the occurrence of chuck association fault, 

improper feed rate, tool post fault, operating speed and workpiece holding 

fault, and these causal factors were the main significant causal factors 

influencing the occurrence of fatal fly-out accident. No safety concern areas 
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and information are obtainable from the work done by Akinyemi et al. (2015). 

In the same vein, the diagnostic inference showed that the serious fly-out 

accident was sensitive to the occurrence of chuck association fault, operating 

speed and safety guard fault. For the occurrence of the minor fly-out accident, 

the inference revealed that once the minor fly-out accident occurred, it was 

most likely that coolant fault was the main significant causal factor. 

 

 

 

4. Conclusion and Recommendation 
 

This study reported the application of BBN methodology for causal and 

diagnostic inference modeling of occurrence of the fly-out accident during 

lathe machining operations and its consequences. Causal inference results 

showed that the probability of occurrence of the fly-out accident was high 

while that of the no fly-out accident was low. The probability of occurrence 

of the fatal fly-out accident was low while the serious fly-out accident was 

moderate but higher than the minor fly-out accident. The diagnostic inference 

evaluated the causal factors, which are indicators for workshop safety 

engineers in the areas of concentration for the implementation of effective 

lathe machine workshop, safety programs and policy. However, as part of the 

limitations of this study, there was non-availability of data; hence, the use of 

the BBN methodology, which was based on the subjectivity of the expert’s 

opinions of the subject matter. A similar study in the future can be carried out 

by including learning capabilities of BBN instead of using the opinions of 

experts on the subject matter. The practical implications of this study was the 

identification of safety concerns (an indicator to developing 

countermeasures/control) during lathe machining operations. It should be 

noted that accident occurrence is dynamic in nature; hence, lathe machining 

operations causal factors should be continually identified and updated on the 

lathe machining operations BBN model to keep tab on the safety of the 

operations and machinists. 
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