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Abstract 
 

Recently, there has been a great interest in applying artificial neural networks (ANNs) 

to predict the compressive strength of concrete in various compositions. This study 

aimed to predict the 28-day compressive strength of concrete delivered at the job site 

using ANN. The datasets used to construct, train and test the ANN model were obtained 

experimentally by the authors. Feature importance analysis was applied to evaluate 

the significance of input variables on the output variable. Feature selection was 

employed to eliminate the least relevant features based on the importance scores to 

improve the model prediction performance. The results demonstrated that the ANN 

model could predict the 28-day compressive strength of delivered concrete with high 

accuracy and robustness. It was also indicated that the ANN model with feature 

selection outperformed the ANN model without feature selection. The R values of the 

ANN model with feature selection were increased by 0.76 and 1.69% in training and 

testing sets, respectively, compared with the model without feature selection. 

Furthermore, it was found that the MSE values for training and testing sets were 

decreased by 0.8381 and 1.8882 MPa, respectively. This study revealed that the C/A 

ratio was the most influential feature of the compressive strength of delivered concrete 

followed by the FA/CA ratio, ER, W/C ratio, slump and temperature. 

 

Keywords: artificial neural network, compressive strength, electrical resistivity, feature  

  importance analysis, feature selection 

 

 

1. Introduction 

 

Concrete is a frequently used construction building material because of its 

good mechanical properties, versatility and availability (Xu et al., 2021). The 

compressive strength of concrete is often considered a notable structural 

design element. Generally, it is attained through a compression test after 28 

days of curing the concrete specimen, which is tedious, cumbersome and 
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expensive. Thus, to ameliorate this situation, several studies were performed 

to forecast the compressive strength of concrete using conventional statistical 

methods and machine learning techniques (Muliauwan et al., 2020; Silva et 

al., 2020; Xu et al., 2021). 

 

The relationship between compressive strength and the components of 

concrete is nonlinear and complex; therefore, it can be challenging to 

determine the compressive strength of concrete using conventional statistical 

methods such as empirical formula (Pengcheng et al., 2020). Lately, the 

compressive strength of concrete is determined using machine learning 

approaches such as artificial neural network (ANN) (Muliauwan et al., 2020; 

Lin and Wu, 2021), support vector machine (SVM) (Silva et al., 2020; Ren et 

al., 2021) and random forest (Pengcheng et al., 2020). These studies have 

shown that machine learning-based models are more feasible than traditional 

statistical approaches.  

 

The abovementioned studies have shown convincing results in predicting the 

compressive strength of concrete. However, the concrete delivered and placed 

on an actual construction site is exposed to highly variable conditions. The 

water content and water to cement (W/C) ratio may range because of various 

environmental situations and different uncertainties encountered all through 

the mixing and transportation of concrete (Derousseau et al., 2019). Hence, 

when used as input variables to any machine learning model, the model 

predicts the compressive strength of laboratory-sampled concrete, not the 

concrete delivered and placed at the job site (Derousseau et al., 2019). 

However, the abovementioned studies did not consider these possibilities 

when the water content and W/C ratio were used as input variables for their 

proposed models. Therefore, despite the high prediction accuracy of these 

studies, the challenge of predicting the compressive strength of delivered 

concrete at the job site remains relevant. 

The average electrical resistivity (ER) of fresh concrete strongly correlates to 

the W/C ratio (Obla et al., 2018); hence it is used to represent the actual W/C 

ratio of delivered concrete. Therefore, it can be used as one of the input 

variables when developing a concrete compressive strength prediction model. 

To the best of the author’s knowledge, the ER of fresh concrete has never been 

reported in the literature as an input variable of any machine learning method 

probably because of the data unavailability. 

 

This study aimed to develop an ANN model that predicts the 28-day 

compressive strength of concrete delivered at the job site. The input variables 
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included the ER of the fresh concrete (Ω-m), slump (mm), maximum 

aggregate size (mm), FM of fine aggregates, temperature (°C) of concrete 

when delivered at the job site and W/C, FA/CA and C/A ratios. The output 

variable was the 28-day compressive strength of concrete. This study 

conducted feature importance analysis to determine which input variables or 

features may be the most or least relevant to the target or output variable. 

Feature selection was likewise performed to eliminate the least relevant 

features to improve the model prediction accuracy. Finally, the proposed ANN 

model was compared with other researchers’ work. 

 

 

 

2. Methodology 

 

2.1 Data Collection 

 

Datasets are necessary to construct, train and test the proposed ANN model. 

To obtain these data, the following activities were conducted: 1) formulation 

of concrete mixtures; 2) making and curing of concrete specimens; 3) 

conducting quality tests. A non-air-entrained normal concrete without 

admixtures and supplementary cementitious materials such as fly ash was 

used. Only one type of cement was utilized – Republic Type I Ordinary 

Portland cement with a specific gravity of 3.15 (Table 1).  

 

Table 1. Materials and their inherent properties 

 

Materials Properties 

  

Cement Republic Type I Ordinary Portland cement 

Specific gravity 3.15 

      

Fine Aggregate First batch Second batch 

Specific gravity 2.51 2.42 

Fineness modulus 3.06 3.33 

Moisture content (%) 7.83 7.67 

Absorption values (%) 3.33 5.30 
      

Coarse aggregate (mm) 

Maximum aggregate size 

9.5 

(3/8 in.) 

19 

(3/4 in.) 

Specific gravity 2.42 2.6 

Moisture content (%) 5.28 2.98 

Absorption values (%) 4.30 2.83 
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River sand and rounded aggregates from the Mandulog River, Philippines 

were used as fine aggregates and coarse aggregates, respectively. These were 

supplied by J-Con Material Testing Center, Iligan City. Their properties, such 

as specific gravity, fineness modulus, moisture content and absorption values 

were also provided by the supplier (Table 1). Lastly, potable water was used 

for casting all the concrete specimens. 
 

The formulation of concrete mixtures was based on the absolute volume 

method as discussed in American Concrete Institute (ACI) 211.1-91 (ACI 

Committee 211, 2002). The 36 different concrete mix designs were derived 

based on their maximum aggregate size, slump and cement factors (Figure 1). 

The cement factor refers to the quantity of cement (bags) required for 1 m3 of 

concrete. The details of the proportions for concrete mixtures are shown in 

Table 2 including the amount of cement, fine and coarse aggregates, water, 

slump, maximum aggregate size, air content, W/C ratio and fineness modulus 

of fine aggregates. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Derivation of 36 concrete mix designs 
 

The mixing of concrete was based on the formulated 36 different concrete mix 

designs. The slump of concrete was measured following ASTM 

C143/C143M-20 (2020) to check its consistency and workability. The 

temperature of the concrete was also determined by using a temperature 

measuring device (Eagletech TP101, Aukey International Ltd., China) 

inserted into the concrete as per ASTM C1064/C1064M-17 (2017). The 

concrete specimens were made in 150 x 300 mm (6 x 12 in.) plastic cylinder 

molds (Figure 2). The ER was measured using a probe (Mancio et al., 2010) 
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after the fresh concrete was placed into the plastic cylinder molds. The probe 

was vertically immersed in fresh concrete and centrally located within the 

plastic cylinder mold to measure the ER of fresh concrete within 30 min after 

mixing and before the initial setting of the cement. Two measurements were 

made as a standard procedure (Mancio et al., 2010), and the computed average 

was used as one of the input variables for the ANN model. After removing the 

probe, the cylinder mold vibrated again using a rubber mallet. After 24 h of 

initial curing, the plastic cylinder mold was removed, and appropriate 

identification was placed in each specimen. Specimens were placed in a curing 

pond filled with tap water and cured at room temperature (24±2 °C). The 

making and curing of the specimen followed the ASTM C192/C192M-19 

(2019). The compressive test was performed on the 28th day of curing as per 

ASTM C39/C39M-21 (2021). The compressive test was conducted in the J-

Con Material Testing Center, a Department of Public Works and Highways 

(DPWH)-Bureau of Research and Standards (BRS) accredited testing 

laboratory. 
 

Table 2. Details of concrete mix proportions 

 

Mix 
no. 

Slump 
(mm) 

Max. size 
of 

aggregate 
(mm) 

% 
air 

content 

W/C 
ratio 

FM 
of 
FA 

Mix proportion of concrete (kg) 

Water Cement FA CA 

1 130 19 0.02 0.3143 3.06 13.20 42.00 48.00 61.20 

2 160 19 0.02 0.3316 3.06 13.00 39.20 51.30 61.20 

3 163 19 0.02 0.3539 3.06 13.80 39.00 57.55 65.60 

4 161 19 0.02 0.3973 3.06 13.35 33.60 56.10 61.20 

5 170 19 0.02 0.3815 3.06 11.75 30.80 58.50 61.25 

6 150 19 0.02 0.4161 3.06 11.65 28.00 60.90 61.25 

7 130 19 0.02 0.4135 3.06 11.00 26.60 62.10 61.22 

8 131 19 0.02 0.4564 3.06 11.50 25.20 63.30 61.25 

9 182 19 0.02 0.4622 3.06 11.00 23.80 64.50 61.20 

10 190 19 0.02 0.3119 3.06 13.10 42.00 46.80 61.25 

11 150 19 0.02 0.3189 3.06 12.50 39.20 49.20 61.20 

12 190 19 0.02 0.3434 3.06 12.50 36.40 51.60 61.20 

13 150 19 0.02 0.3134 3.06 10.53 33.60 54.00 61.20 

14 195 19 0.02 0.3571 3.06 11.00 30.80 56.45 61.25 

15 240 19 0.02 0.3912 3.06 11.50 29.40 57.65 61.25 

16 185 19 0.02 0.3232 3.06 9.05 28.00 61.25 61.35 
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17 172 19 0.02 0.3571 3.06 9.50 26.60 65.45 61.40 

18 178 19 0.02 0.3770 3.06 9.50 25.20 66.65 61.40 

19 132 9.5 0.03 0.2865 3.33 14.44 50.40 45.30 51.20 

20 141 9.5 0.03 0.3038 3.33 14.46 47.60 47.60 51.20 

21 165 9.5 0.03 0.3237 3.33 14.50 44.80 48.30 50.40 

22 154 9.5 0.03 0.3333 3.33 14.00 42.00 50.60 50.40 

23 195 9.5 0.03 0.3304 3.33 12.95 39.20 52.95 50.40 

24 130 9.5 0.03 0.3201 3.33 11.65 36.40 55.25 50.40 

25 100 9.5 0.03 0.3720 3.33 12.50 33.60 57.60 50.40 

26 125 9.5 0.03 0.4091 3.33 12.60 30.80 59.90 50.40 

27 90 9.5 0.03 0.4464 3.33 12.50 28.00 62.20 50.40 

28 143 9.5 0.03 0.3175 3.33 16.00 50.40 40.90 50.40 

29 157 9.5 0.03 0.3151 3.33 15.00 47.60 43.20 50.40 

30 130 9.5 0.03 0.3348 3.33 15.00 44.80 45.55 50.40 

31 160 9.5 0.03 0.3452 3.33 14.50 42.00 47.85 50.40 

32 164 9.5 0.03 0.3546 3.33 13.90 39.20 50.20 50.40 

33 166 9.5 0.03 0.3984 3.33 14.50 36.40 52.50 50.40 

34 142 9.5 0.03 0.3720 3.33 12.50 33.60 54.85 50.40 

35 100.7 9.5 0.03 0.4367 3.33 13.45 30.80 57.15 50.40 

36 140 9.5 0.03 0.5071 3.33 14.20 28.00 59.50 50.40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Plastic cylinder mold 

Table 2 continued. 
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A total of 144 datasets from 36 different concrete mix designs were obtained 

from the experiment. The datasets were arranged in a format of eight input 

variables and one output variable. The input variables used for the proposed 

ANN model were not only limited to the derived ratios of concrete 

constituents and their properties such as W/C ratio, fine aggregate-coarse 

aggregate (FA/CA) ratio, cement-aggregate (C/A) ratio, fineness modulus 

(FM) of fine aggregates and maximum aggregate size (mm); the results from 

field quality tests such as slump (mm), concrete temperature (°C), and the ER 

of the fresh concrete (Ω-m) were also considered. The output variable was the 

28-day compressive strength of concrete. The W/C ratio, FA/CA ratio, C/A 

ratio, and the total amount of aggregates, A, were computed using Equations 

1, 2, 3 and 4, respectively. The range of input and output variables used in the 

proposed ANN model is shown in Table 3. 

 

 

 

 

 

 

 

 

 

 

 

Table 3. The range of input and output variables used in the ANN model 

 

Name of the variables 
Data used in training and testing the model 

Minimum Maximum 

   

Input variables   
   

ER (Ω-m) 3.7217 11.0768 
   

Slump (mm) 90 240 
   

Max. aggregate size (mm) 9.5 19 
   

Fineness modulus of fine aggregate 3.06 3.33 
   

Temperature (°C) 26.40 35.10 
   

W/C ratio 0.2865 0.5071 
   

FA/CA ratio 0.7641 1.2341 
   

C/A ratio 0.1893 0.5520 
    

Output variable   
   

28-day compressive strength 17.4 45.63 

 

 

 

(1) W CΤ = 
mass of water (kg)

mass of cement (kg)ൗ       

(2) FA CAΤ = 
amount of FA

amount of CAൗ       

(3) C AΤ = 
amount of cement

 total amount of aggregatesൗ   

(4) A = FA + CA    
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2.2 Data Preparation 

 

To have a better understanding of the datasets, data visualization was applied 

in this study. A histogram is a graphical representation of the distribution of 

each variable in the datasets. The purpose of a histogram is to estimate whether 

a variable has a normal distribution, is skewed, or even has an exponential 

distribution. It also detects the possible outliers in the datasets. A density plot 

is another way of getting a quick idea of the distribution of each variable in 

the datasets. It is a smooth distribution curve drawn on top of each histogram. 

A normal distribution, also referred to as Gaussian distribution, has a 

symmetrical bell-shaped curve. Many machine learning algorithms perform 

better when the variables in the datasets have a Gaussian probability 

distribution (Brownlee, 2020b). Non-normal data imposes a great challenge in 

developing a robust predictive model; hence, data visualization such as 

histograms and density plots were employed to facilitate the choice of 

techniques to improve the robustness of the predictive model. 

 

Correlation indicates the strength of association between two variables 

(Fernando and Walters, 2021). The strength of the relationship is decided by 

the weight of the correlation coefficient, which ranges from +1 to -1. A weight 

of ±1 specifies a great degree of association between two variables. The 

connection between the two variables is weaker as the correlation coefficient 

goes towards 0. There are several varieties of correlation coefficients, and this 

study used Pearson’s coefficient, which is calculated using Equation 5.  

 

 

 

 

where Pxy is the Pearson’s correlation coefficient between x and y; n is the 

number of observations; and xi and yi are the values of x and y for ith 

observation, respectively. 

 

The correlation matrix is a table displaying the correlation coefficients 

between two variables. It provides an easier way to understand the relationship 

between variables, which is useful to know because some machine learning 

algorithms like linear and logistic regression can have poor performance if 

there are highly correlated input variables. 

 

 

 

(5) Pxy = 
n σ xiyi

– σ xi σ y
i

ටൣn σ xi
2 – ( σ xi )

2
൧ටൣn σ y

i
2 – ( σ y

i
)
2
൧
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2.3 ANN 

 

2.3.1 Selection of ANN Architecture 

 

The ANN models have hyperparameters that need to be set to customize the 

model specific to the datasets used such as the number of hidden layers, the 

number of neurons per hidden layer activation functions, optimization 

algorithm, batch size and scaling algorithm. The process of finding the best 

possible combination of hyperparameters is called hyperparameter 

optimization or hyperparameter tuning. This study administered 

GridSearchCV to automate the tuning process. GridSearchCV searched all 

different hyperparameter combinations defined by the authors, as shown in 

Table 4, using the Cross-Validation method (Brownlee, 2018a). The k-Fold 

Cross-Validation was used to find suitable hyperparameters. It ensured that 

the model performed uniformly even at the different subgroups within the 

whole dataset. In this study, the k-fold was equal to five, which meant that the 

datasets were split into 80% training and 20% testing (validation) for each 

fold.  

 

Table 4. Hyperparameters that are considered during grid searching 

 

Hyperparameters   

Activation function 
Hyperbolic tangent (Tanh) 

Rectified linear unit (ReLu) 

Optimization algorithm 
Stochastic gradient descent 

Adaptive moment estimation 

Batch size 4, 8, 16, 32 

Scaling algorithms 
Standardization 

Normalization (Min-max scaling) 

 

2.3.2 Data Scaling 

 

The scale of input and output variables is an important factor in improving the 

stability and performance of the ANN model (Brownlee, 2019a). As shown in 

Table 3, the input variables have different units of measurement and different 

scales. To avoid problems related to the poor performance of the ANN model 

during the learning process, data scaling was applied before the input layer. 

Data normalization or also known as minimum-maximum scaling and 

standardization were both employed during the hyperparameter tuning. 



M. J. Aniñon & E. E. Albiento / Mindanao Journal of Science and Technology Vol. 20 (1) (2022) 177-205 

186 

 

Normalization rescales the range of the variable so that all values are within 

the range of 0 and 1, while standardization rescales the distribution of a 

variable so that the mean of the observed variable is 0 and the standard 

deviation is 1. Data scaling was applied after the datasets were split into 

training and testing sets as discussed in the next section. 

 

2.3.3 Calibration of the Proposed ANN Model 

 

The proposed ANN model was calibrated based on the experimental results to 

investigate its accuracy. A multi-layer feed-forward network with a back-

propagation learning rule was used using Python. The datasets were sorted 

into training and testing sets. Generally, the ANN model is trained using 

known data, referred to as training sets, and its performance is validated using 

unknown data or first seen data, known as testing sets. About 70% of the 

datasets were fed to ANN for training, and the remaining 30% were used for 

testing the trained model. The data scaling was applied only after splitting the 

datasets to avoid information leakage on testing sets which neglected the 

purpose of having testing sets. Before starting the training, values for epoch, 

batch size, learning rate and momentum rate were decided. The training 

process will run for a fixed number of iterations through the training sets called 

the epoch. The initial weights were randomly initialized and were updated 

every batch. The batch size refers to the number of training datasets considered 

by the model within an epoch before weights are updated. A constant learning 

rate was used, which was equal to 0.001. It refers to the increment at each 

iteration and controls how fast the model is customized to the problem. The 

models were trained until they converged at 800 epochs using stochastic 

gradient descent (SDG) algorithm. The SDG is an optimization algorithm used 

to explore viable sets of weights the model may use to make good predictions. 

A momentum rate of 0.9 was utilized to expedite the optimization process. 

The error for those predictions was calculated using a loss function, and the 

value calculated by the loss function was referred to as loss.  

 

The goal of the optimization algorithm is to minimize the loss or the difference 

between the actual and predicted data by changing the weights. Large weights 

can signify that the network has overfitted the training datasets and will likely 

perform poorly when making predictions on new data (Brownlee, 2018b). A 

solution to this problem is to impose weight regularization to change the 

learning algorithm to encourage the network to keep the weights small, thus 

reducing the overfitting of the training datasets and improving the model’s 

generalization. Weight regularization was imposed in this study to penalize 
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the model during training by adding the weight size as a penalty term to the 

loss function. The weight size was calculated using two main approaches, L1 

and L2. The L1 calculated the sum of the absolute values of the weights, while 

L2 computed the sum of the squared values of the weights. The regression 

model that uses L1 regularization is called lasso regression, and the model that 

uses L2 regularization is called ridge regression. L2 regularization can also 

deal with multicollinearity problems. It can be used to estimate the 

significance of the input variables and based on that; it can penalize the 

insignificant input variables. Finally, the performance of the ANN model was 

validated by presenting the remaining 30% of the testing set to the model. The 

prediction performance of the ANN model was evaluated by the following 

statistical parameters: 1) correlation coefficient (R); 2) absolute fraction of 

variance (R2); 3) mean absolute error (MAE); and 4) mean square error (MSE) 

which are expressed by Equations 6, 7, 8 and 9, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

where ti is the target value; oi is the output value; n is the total number; and t ̅

and o̅ are the average value of target and output values, respectively. 

The R measures the strength of the relationship between the predicted and the 

actual values (Fernando and Walters, 2021). As expressed by Equation 6, the 

formula returns a value between -1 and 1, and the value closer to 1 or -1 

indicates a strong correlation. The R2 is the proportion of the variance in the 

output variable that is foreseeable from the input variables (Asteris et al., 

2021). R2 ranges from 0 to 1, where 0 implies that the input variables do not 

explain the variation of the output variable, while 1 suggests that the input 

variables elucidate the variation in the output variable. The MAE is the mean 

of all the absolute errors between the predicted value and the actual value 

(Ahmad et al., 2020). The MSE informs how close a regression line is between 

(7) R
2
=

(n σ tioi– σ ti σ oi ) 
2

ൣn σ ti
2 – ( σ ti )

2
൧ൣn σ oi

2 – ( σ oi )
2
൧

   

(6) = 
σ (ti– t)̅(oi – o̅)n

i = 1

ටൣn σ ti
2 – ( σ ti )

2
൧ൣn σ oi

2 – ( σ oi )
2
൧

   R 

(8) = 
1

n
൥෍ȁti– oiȁ

n

i=1

൩        MAE 

(9) = 
1

n
෍ (ti – oi)

2

n

i=1

      MSE 
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the predicted and the actual values by quantifying the errors between the two 

values and squaring them (Ahmad et al., 2020). 

 

2.4 Feature Importance Analysis 

 

Feature importance analysis was performed using permutation feature 

importance (PFI) to evaluate the significance of the input variables or features 

on the output variable. The PFI measures the increase in the model’s 

prediction error after permuting the feature. It tells which features a model 

relies on the most. A feature is important if shuffling its values increases the 

prediction error, which indicates that the model relied on the feature for 

prediction. A feature is unimportant if shuffling its values does not change the 

prediction error, which shows that the model ignored the feature for the 

prediction (Brownlee, 2020a). 

 

The computation of PFI was performed after the authors obtained a trained 

ANN model with acceptable performance. The training datasets, T, were used 

to estimate the ANN model’s predictive power using R2. The model’s 

performance was recorded as baseline performance, P, on the datasets, T. To 

calculate the importance of a particular feature, f, the column for that feature 

is temporarily removed from the testing datasets, T. The new model was fitted 

on the reduced datasets using GridSearchCV as discussed in section 2.3.1, and 

then its feature columns were shuffled. Afterward, the new model’s 

performance, Pi,f, on reduced and shuffled datasets, Ti,f, was computed. The 

preceding three steps were repeated multiple times, i = 1, …, I. The difference 

between the baseline performance, P, and the average performance of the new 

models calculated the feature importance score, FIf, for the feature f, as 

expressed in Equation 10 (Fisher et al., 2019). 
 

 

 

 

 

The feature importance scores can also be used for feature selection. Feature 

selection is a procedure of reducing the number of input variables when 

developing a predictive model to reduce the computational cost of modeling 

and improve the model’s performance (Brownlee, 2019b). The comparison of 

ANN models without and with feature selection was performed in this study 

to verify this conjecture. Their performance was evaluated in terms of the 

selected statistical parameters. 

 

(10) FIf = P –  
1

R
෍ Pi,f

I

i=1
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3. Results and Discussion 

 

3.1 Descriptive Statistics of Data 

 

As stated earlier, the datasets were collated and presented through 

visualization such as histograms and density plots (Figure 3). As shown in 

Figure 3, most of the variables, if not all, did not follow a normal distribution. 

The normal distribution, also called Gaussian, has a symmetrical bell-shaped 

curve. To emphasize, the maximum aggregate size and fineness modulus 

variables had the least likely to be considered normal. That was mainly 

because there were only two maximum aggregate sizes used in this study, 

which were 9.5 and 19 mm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 3. Histogram and density plots of each variable in the dataset 

 

Moreover, there were two batches of fine aggregates used in this work. 

Although they were from the same source, the test showed that these batches 

of fine aggregates had slightly different fineness modulus (3.06 and 3.33). 

Since machine learning algorithms perform better when numerical values have 

a normal distribution, this study employed power transforms like Box-Cox 

and Yeo-Johnson transformations to make the probability distribution of the 

variables more Gaussian. 
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Figure 4 presents the correlation matrix of the datasets used in this study. A 

correlation matrix is a table that displays the correlation coefficients between 

variables. Each cell in the correlation matrix indicates the correlation between 

two variables.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Correlation matrix 

 

It was found that input variables ER and FA/CA ratio showed marginal 

correlation (|r| > 0.5) to the 28-day compressive strength, while input variables 

W/C Ratio and C/A Ratio exhibited strong correlation (|r| > 0.7) to the 28-day 

compressive strength of concrete. It is important to note that a high correlation 

between input and output variables is a good indication of better predictability. 

However, when two or more input variables are highly correlated (|r| > 0.7), it 

indicates a presence of multicollinearity, which is present among input 

variables FM, temperature, and maximum aggregate size. Some machine 

learning algorithms, such as linear and logistic regression, can have poor 

performance if multicollinearity is present in the data. However, Aggarwal et 

al. (2014) discovered that when using the concrete constituents in concrete 

compressive strength prediction, multicollinearity is most likely present, and 

the use of ridge regression can circumvent the problem (Aggarwal et al., 2014; 
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Chong et al., 2021). Another way of dealing with multicollinearity is to drop 

some redundant variables or by simplifying the model by using feature 

selection techniques. Both ridge regression and feature selection were applied 

in this study, which were discussed in sections 2.3.3 and 2.4, respectively. 

 

3.2 Parametric Configuration of ANN Model 

 

The GridSearchCV was administered to automate the selection of the best 

hyperparameter combinations. GridSearchCV generated a long list of the 

results after multiple training sessions, but only the top five most optimal 

architectures are presented in Table 5.  

 

Table 5. ANN models generated during grid searching 

 

Model 
Hidden 
layers 

Activation 
function 

Optimization 
algorithm 

Batch 
size 

Scaling 
algorithm 

R2 Rank 

without Feature Selection 

MO-1 12, 6 Tanh SDG 8 Standardization 0.8926 1 

MO-2 12, 6 Tanh SDG 32 Standardization 0.8901 2 

MO-3 18, 6 Tanh SDG 32 Standardization 0.8882 3 

MO-4 16, 6 Tanh SDG 32 Standardization 0.8775 4 

MO-5 14, 6 Tanh SDG 8 Standardization 0.8740 5 

with Feature Selection 

MW-1 7, 6 Tanh SDG 8 Standardization 0.9063 1 

MW-2 14, 6 Tanh SDG 16 Standardization 0.9054 2 

MW-3 12, 6 Tanh SDG 8 Standardization 0.8969 3 

MW-4 7, 7, 6 Tanh SDG 8 Standardization 0.8883 4 

MW-5 
13, 12, 

6 
Tanh SDG 8 Standardization 0.8791 5 

 

The ANN model exhibiting the highest R2 is the best model which can 

accurately predict the 28-day compressive strength of delivered concrete at 

the job site. As shown in Table 5, MO-1 had the highest R2 value of 0.8926; 

therefore, it was selected as the final model for the prediction of the 28-day 

compressive strength of delivered concrete. The final ANN model has two 

hidden layers with 12 and six neurons in the first and second hidden layers, 

respectively. Meanwhile, the Tanh function was used as an activation function 

throughout the layers, and SDG was used as the optimizer. To find the best 

architecture, the authors tried two scaling techniques: 1) normalization and 2) 
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standardization. However, the best model (MO-1) only employed the 

standardization method to rescale the input variables into the desired value 

ranges. As mentioned earlier, feature selection was performed in this study. 

Some of the input variables were removed based on their importance scores 

which are further discussed in section 3.3. The removal of input variables 

resulted in a new fitted model using GridSearchCV. As shown in Table 5, 

MW-1 had the highest R2 value of 0.9063; therefore, it was selected as the 

final model for the prediction of the 28-day compressive strength of delivered 

concrete. The final ANN model had two hidden layers with seven and six 

neurons in the first and second hidden layers, respectively. It also had the same 

activation function, optimization algorithm, batch size, and scaling algorithm 

as the final model without feature selection. 

 

3.3 Feature Importance Analysis Results 

 

The result of the feature importance analysis (Table 6) indicates that the C/A 

ratio was the most significant followed by the FA/CA ratio, ER, W/C ratio, 

slump and the temperature of delivered concrete. 

 

Table 6. Feature importance scores 

 

Rank Feature Score 

1 C/A ratio 0.53803 

2 FA/CA ratio 0.20456 

3 ER 0.11503 

4 W/C ratio 0.09468 

5 Slump 0.03797 

6 Temperature 0.01420 

7 Maximum aggregate size 0.00001 

8 FM 0.00000 

 

3.3.1 Effect of C/A Ratio 

 

This study found that the compressive strength of concrete was related to the 

C/A ratio (Figure 7a). The results are similar to Poon and Lam (2008), which 

revealed that when the A/C ratio decreased, the compressive strength of 

concrete increased. This can be explained by the decrease in the W/C ratio 

when the cement content was increased given constant workability. As 

established by the well-known Abram’s model (Abrams, 1927), if the W/C 
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ratio minimizes, the compressive strength of the concrete escalates. Moreover, 

if the volume of aggregates remains constant and the water content is the same 

for the constant workability, the rise in cement content means a stronger paste 

for the expanse of aggregates (Mishra, 2013). Hence, when the C/A ratio 

increases, the compressive strength of concrete increases as well. 

 

3.3.2 Effect of FA/CA Ratio 

 

The volume of the concrete was mostly occupied by fine and coarse 

aggregates (Table 2), which explained why the two most significant features 

of the model had something to do with aggregates. Misha (2013) underscored 

that the compressive strength of concrete decreases when the FA/CA ratio 

increases. This was validated in the present study (Figure 7b); when the 

FA/CA ratio increases, it requires more paste due to the increased overall 

aggregate surface area (Mishra, 2013). Hence, water demand is expected to 

increase to make more paste which can cause the W/C ratio to increase as well. 

Thus, the compressive strength of concrete will likely decrease due to the 

increase in the W/C ratio. 

 

3.3.3 Effect of ER 

 

The relationship between ER of fresh concrete and the actual W/C ratio of 

concrete was established by Mancio et al. (2010), and their strong direct 

correlation was also confirmed by Neha and Rajeev (2015). In their study, 

they varied the W/C ratio while keeping the water content constant, which 

indicated that an increase in the W/C ratio means a lower cement content. 

These further demonstrated that fewer conductive ions were released by the 

reduced quantity of cement per unit volume of concrete; hence, there is a lower 

conductivity or higher resistivity (Mancio et al., 2010; Neha and Rajeev, 

2015). Meanwhile, Obla et al. (2018) related the ER of fresh concrete to the 

W/C ratio of concrete by keeping the paste volume constant and by increasing 

or decreasing the paste volume. The paste volume was calculated as the sum 

of the volumes of the cement and the mixing water content. Their results were 

presented in three scenarios (Obla et al., 2017). First, at a constant paste 

volume, as the W/C ratio decreased, the water content decreased, while the 

cement content also increased. This led to the more conductive ions in the 

mixture with lesser conductive pathways. As a result of these competing 

effects, as the W/C ratio increases, the ER of fresh concrete may increase or 

decrease depending on which of the factors is dominant. Second, when the 

W/C ratio is increased while keeping the cement content constant, the water 
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content increases, and the paste volume also increases. The higher mixing 

water content will provide greater conductive pathways consequently 

lowering the fresh concrete’s electrical resistivity. Third, when the W/C ratio 

is increased by reducing the amount of cement in the mixture and while 

keeping the water content fixed, the paste volume decreases. Hence, as the 

W/C ratio is increased, the electrical resistivity is also increased, and this was 

referred to as the “pore solution” effect in Obla et al.’s (2017) discussion, 

which supported the results of Mancio et al. (2010). 
 

In this study, the paste volume and the cement content were varied. The paste 

volume varied from 0.0175 to 0.0320 m3, while the cement factor varied from 

9 to 18. On the other hand, the water content varied from 9.05 to 16 L; 

however, as demonstrated in Figure 5, the variation in the water content was 

lesser than the variation of cement content making it almost negligible.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5. W/C ratio versus water and cement contents 

 

As presented in Figures 5 and 6, the experimental data indicated that an 

increase in the W/C ratio was chiefly caused by a decrease in cement content. 

Although the water content also varied, the variation was lesser than the 

cement content, and it can be considered almost constant. Furthermore, as the 

W/C ratio increased, the paste volume decreased, which had the same 

observation from scenario three discussed by Obla et al. (2017). Therefore, as 

the W/C ratio is increased due to the “pore solution” effect, the ER of fresh 

concrete is likewise increased. Since the W/C ratio is inversely proportional 

to the compressive strength of concrete, that means the ER of fresh concrete 

increased as its compressive strength decreased (Figure 7c). 
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Figure 6. W/C ratio versus paste volume 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  

 

 

Scatter plot: (a) C/A ratio vs. strength, (b) FA/CA vs. strength, (c) ER vs. 
strength, (d) W/C ratio vs. strength, (e) slump vs. strength, (f) temperature 

vs. strength 
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3.3.4 Effect of W/C Ratio 

 

The findings of this study (Figure 7d) are identical to the well-known Abram’s 

model (Abrams, 1927). The results showed that the compressive strength of 

concrete decreased as the W/C ratio increased. Briefly, the W/C ratio was 

inversely proportional to the compressive strength of concrete. Although the 

findings of this study are similar to Abram’s model, it is significant to note 

that the compressive strength of concrete was not only determined by the W/C 

ratio but was also affected by the other factors as confirmed by several 

researchers (Pengcheng et al., 2020; Muliauwan et al., 2020; Silva et al., 2020; 

Xu et al., 2021; Lin and Wu, 2021). 

 

3.3.5 Effect of Slump 

 

It can be observed from Figures 4 and 7e that slump had a poor correlation to 

the compressive strength of concrete. However, it can still affect its 

compressive strength indirectly. Concrete mix with a low slump is more 

difficult to work with and is not suitable for some applications preventing the 

concrete from consolidating properly after it is poured. Entrapped air is 

removed during the consolidation process by vibration or compaction. 

Therefore, when the concrete is not properly consolidated, the trapped pockets 

of air in the concrete decrease the ability of concrete to withstand compression. 

On the other hand, when the slumps are above average, the strength and 

durability of the concrete reduce as well. The concrete mix weakens when too 

much water is added. Generally, when concrete has too much water, concrete 

aggregates tend to segregate and settle at the bottom. So, when the concrete 

hardens, it is not a homogeneous mixture. Hence, admixtures are introduced 

to concrete mixtures to achieve a higher slump so that the quality of concrete 

is maintained. However, it is noteworthy that even when the concrete mix has 

no admixtures, the concrete mix with a given W/C ratio can give different 

slump measurements depending on the aggregates’ gradation. 

 

3.3.6 Effect of Temperature 

 

As shown in Figure 4, the temperature had a higher correlation to compressive 

strength than slump. Yet, it has a lower importance score (Table 6), which 

means the slump was more relevant to the compressive strength predictive 

model than temperature. The correlation coefficient between temperature and 

compressive strength was -0.35, which can be considered a poor correlation. 

It can also be observed in Figure 7f that the scatter plot for temperature, and 
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compressive strength was vertically concentrated rather than sloping. The 

study found that between a concrete temperature of 26.40 to 35.10 °C, the 

temperature had no direct effect on the compressive strength of concrete. 

 

Nevertheless, when the temperature of concrete increases, the rate of the 

hydration process also increases; hence, the concrete will gain strength 

rapidly. However, the final strength of the concrete that is kept at a higher 

temperature will be lower due to the less well-structured and more porous 

form of hardened concrete paste resulting from a faster rate of hydration 

reaction (Patel, 2018). Temperature test on the delivered concrete is already a 

common practice at the job site; hence, the concrete temperature was 

considered as an input variable rather than the ambient temperature. 

 

Moreover, the feature importance scores were also used as the basis for feature 

selection. A threshold of 1e-5 was used, meaning a score of less than that was 

eliminated. As shown in Table 6, the input variables maximum aggregate size 

and fineness modulus had feature importance scores of 0.00001 and 0.00000, 

respectively. Hence, these two input variables were eliminated from the 

model. As mentioned earlier, feature selection is a process of reducing the 

number of input variables when developing a predictive model to reduce the 

computational cost of modeling and improve the performance of the model 

(Brownlee, 2019b). The results of the comparison between ANN models 

without and with feature selection are discussed in section 3.4. 

 

3.4 ANN Model’s Performance 

 

The performance of the ANN models without and with feature selection is 

presented in Table 7. Even without feature selection, the model had already 

shown good performance in predicting the 28-day compressive strength 

values. The R and R2 for training sets were found as 0.9448 and 0.8926 

implying that there was a strong correlation between the actual and predicted 

values in both cases. The testing sets were fed to the model, and the results 

showed that R and R2 were improved (Table 7). The results validated the 

model performance in the training sets. The MAE for training was 2.0749, 

which stands for the average difference between the actual and predicted 

values. This was improved in the testing set with an MAE value of 1.9908. 

The MSE for training sets was 6.5638 indicating that the ANN model over 

forecasted the 28-day compressive strength averagely by 6.5638 MPa for 

training. The MSE was decreased to 5.9914 in the testing sets, which showed 

that the model performs well with unseen data.  
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On the contrary, it can be seen in the results (Table 7) that the ANN model 

with feature selection outperformed the ANN model without feature selection 

in all four statistical parameters. The R values of the ANN model with feature 

selection were increased by 0.76 and 1.69% in training and testing sets, 

respectively, compared with the model without feature selection. Furthermore, 

it was also found that the MSE values for training and testing sets were 

decreased by 0.8381 and 1.8882 MPa, respectively. Thus, the results showed 

that feature selection helped improve the prediction accuracy of the model. 

The visual plots are shown in Figures 8 and 9, which present the relationship 

between the experimental data and the predicted data in the training and 

testing stage of the ANN model with feature selection, respectively. It 

supported that the ANN model with feature selection can predict the 28-day 

compressive strength of delivered concrete with great precision. 

 

Table 7. Performance of models without and with feature selection 

 

ANN models 

Statistical parameters 

R R2 MAE MSE 

Without feature selection     

Training Set 0.9448 0.8926 2.0749 6.5638 

Testing Set 0.9499 0.9023 1.9908 5.9914 

With feature selection     

Training Set 0.9520 0.9063 1.9275 5.7257 

Training Set 0.9660 0.9331 1.6421 4.1032 

 

The best model that can predict the 28-day compressive strength of delivered 

concrete at the job site is the model with the least values of MAE and MSE 

and the highest values of R and R2 (Ahmad et al., 2021). From the engineering 

point of view, the ANN prediction model is considered accurate and robust 

when the R-value is above 95% (Tavares et al., 2020). In this study, the ANN 

model with feature selection was selected as the best model with an 

architecture defined in Figure 10. As discussed earlier, the ANN model 

originally had eight neurons in the input layer. It was reduced to six neurons 

after feature selection which represents the top six most significant input 

variables, namely C/A ratio, FA/CA ratio, ER, W/C ratio, slump and the 

temperature of the delivered concrete. Furthermore, the ANN model had two 

hidden layers with seven and six neurons in the first and second hidden layers, 

respectively. Then, one neuron in the output layer refers to the 28-day 

compressive strength of delivered concrete at the job site. 
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Figure 8. Correlation of experimental and predicted data in the training stage 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9. Correlation of experimental and predicted data in the testing stage 
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Figure 10. Proposed ANN model 

 

3.5 Comparison with Other Studies 

 

There is no general empirical formula to compute the compressive strength of 

concrete. In engineering practice, the compressive strength of concrete is 

measured through a compression test of cylindrical concrete specimens after 

28 days of curing (National Ready Mixed Concrete Association, 2014). The 

compressive strength of concrete is computed by dividing the maximum load 

resisted by the specimen during the test by the average cross-sectional area as 

described in ASTM C39/C39M-21 (2021). For example, the 150 mm – 

diameter cylindrical concrete specimen failed at 638.45 KN during 

compression testing. The computed compressive strength was 36.13 MPa, as 

shown below using Equation 11. 

 

 

 

 

The sample computation is the following: 

 

f
'
c=

(638.45 × 1000)N
π
4

(150 mm)
2

=36.13 MPa 

 

The conventional way of determining the compressive strength of concrete is 

time-consuming. Hence, to resolve this problem, conventional statistical 

methods and machine learning techniques were explored by several 

researchers to predict the 28-day compressive strength of concrete 

(Muliauwan et al., 2020; Silva et al., 2020; Xu et al., 2021). The results of the 

(11) f
'
c=

F

A
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current study have been compared with the studies conducted by Jee et al. 

(2004), Derousseau et al. (2019) and Xu et al. (2021) (Table 8). Jee et al. 

(2004) predicted the 28-day compressive strength of in-situ concrete using 

multiple linear regression (MLR) analysis. Although the study aimed to 

predict the compressive strength of in-situ concrete, it did not capture the 

variation caused by construction practices and variable environmental 

conditions in developing the model, which implies that the model was 

proposed for laboratory-sampled concrete instead of in-situ concrete. 

Derousseau et al. (2019) concluded that the predictive models trained by 

laboratory-obtained data were not reliable when used for predicting the 

compressive strength of field-placed concrete. However, it can be significantly 

improved by employing hybrid data, which is a combination of laboratory-

obtained and field-specific data. Xu et al. (2021) used a genetic algorithm 

(GA) to comprehensively evaluate the various influencing factors from the 

4M1E perspective and used random forest (RF) as a modeling algorithm to 

predict the compressive strength of concrete based on the selected influential 

factors. Although the approach improved the model accuracy, the collection 

of 20 selected variables was difficult, which made the method more tedious. 

On the other hand, the current study focused on capturing the variability of 

water content and W/C ratio caused by variable environmental conditions and 

other uncertainties encountered during the transportation of concrete from the 

laboratory or batching plant to the construction or job site to predict the 

compressive strength of delivered concrete. In Table 8, the proposed model of 

the current study had the second-highest R2. 

 

Table 8. Comparative analysis 

 

Sources Method R2 Rank 

Current study ANN 0.9331 2 

Xu et al. (2021) GA-RF 0.9645 1 

Jee et al. (2004) MLR 0.6700 3 

Derousseau et al. (2019) RF 0.5100 4 

 

 

 

4. Conclusion 

 

The R values of the ANN model with feature selection were 0.9520 and 0.9660 

for training and testing sets, respectively. From the engineering standpoint, 

these results, which were above 95%, demonstrated that the ANN model could 
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predict the 28-day compressive strength of delivered concrete with high 

accuracy and robustness. After the feature importance analysis, the C/A ratio 

was found to be the most influential feature of the model followed by FA/CA 

ratio, ER, W/C ratio, slump, the temperature of delivered concrete, maximum 

aggregate size and FM. Applied in this study, feature selection improved the 

prediction accuracy of the model. The R values of the ANN model with feature 

selection were increased by 0.76 and 1.69% in training and testing sets, 

respectively, compared with the model without feature selection. Furthermore, 

it was also revealed that the MSE values for training and testing sets were 

decreased by 0.83812 and 1.88814 MPa, respectively. Lastly, the six selected 

variables during feature selection were the C/A ratio, FA/CA ratio, ER, W/C 

ratio, slump and the temperature of delivered concrete. 
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