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Abstract 
 

There is a long-standing ambiguity in the interpretation of near-threshold 

enhancement in hadron-hadron scatterings. The origin of enhancement can reveal the 

nature of the interaction between the two hadrons. However, there is no 

straightforward approach to probe the nature of near-threshold enhancement in a 

model-independent manner. The present study aimed to formulate a deep learning 

approach to detect a two-hadron bound state given only the partial scattering cross-

section. To ensure that analyticity and unitarity were satisfied, an S-matrix model with 

a parameterized background was used for the training dataset. A deep neural network 

(DNN) model was designed and developed using the Adam and AMSGrad optimizers. 

To demonstrate that the trained DNN model can generalize beyond the training 

dataset, two variants of exact amplitudes of separable potential were used for 

validation. Finally, without using the deuteron’s known properties, such as the binding 

energy and its magnetic moment, the model identified the correct origin of threshold 

enhancement in the nucleon-nucleon scattering data. The proposed method can be 

applied to analyze the recently discovered near-threshold enhancements observed in 

scattering experiments. 

 

Keywords: nucleon-nucleon scattering, bound and virtual states, threshold structure, 

hadronic molecule, deep learning 

 

 

1. Introduction 

 

One of the possible candidate quantum states of near-threshold enhancement 

observed in hadron-hadron scatterings are hadronic molecules or enhanced 

kinematical effects (Guo et al., 2018; Guo et al., 2015; Olsen et al., 2018; 
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Yamaguchi et al., 2020). These molecular states are generated by the 

dynamics of meson exchange with heavier mesons responsible for the intricate 

balance between short-range attraction and repulsion. On the other hand, the 

generally attractive long-distance behavior is dominated by the exchange of 

lighter meson (i.e., the pion). All the stable and unstable nuclei fall under the 

molecular hadron category. However, unlike in nuclear physics, the more 

general hadronic molecules are expected to be unstable. This short-lived 

nature of unstable hadronic molecules prevents a direct study of their 

properties and the only possible direction to make progress is to use the 

scattering data. 
 

In this paper, a deep neural network (DNN) was constructed that can detect 

the nucleon-nucleon-bound state using only the scattering cross-section. The 

proposed approach is crucial in interpreting near-threshold phenomena 

because, as stated, resonances are short-lived and cannot be studied directly. 

The low energy scattering of two nucleons provides a benchmark where the 

deep learning approach can be tested. Two S-wave cross-sections associated 

with nucleon-nucleon scattering were used: the spin-singlet and the spin-

triplet shown in Figure 1.  
 

 

 

 

 

 

 

 

 
 

Figure 1. S-wave partial cross-sections of nucleon-nucleon in spin singlet (a) and spin 

triplet (b) configurations 
 

PWA93 corresponds to the analyses of the multi-energy partial wave of the 

nucleon-nucleon system (Stoks et al., 1993). ECS96 is a two-meson-exchange 

model that reproduces the nucleon-nucleon scattering data (Rijken et al., 

1996). Nijm93 is the Nijmegen soft-core potential for which the NijmI is the 

nonlocal version, while NijmII is the local version (Stoks et al., 1994). Finally, 

Reid93 corresponds to the regularized soft-core potential (Stoks et al., 1994). 

All these analyses and models reproduced the nucleon-nucleon scattering data 

very well with χ2 / ndf ~ 1. In the energy window considered in the present 

study, all the data to be analyzed were almost overlapping as seen in Figure 1, 

which reflects the consistency of the different approaches. The data in Figure 

1 are obtained from Stoks et al. (1993, 1994) and Rijken et al. (1996). 

(a) (b) 
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Note that the spin-singlet and the spin-triplet cross-sections exhibited large 

values at the threshold (Ecm = 0), suggesting a possible nucleon-nucleon 

molecular state. The precise knowledge of deuteron’s binding energy and 

magnetic moment can be used to deduce that the spin-triplet threshold 

enhancement corresponds to the two-nucleon-bound state. Specifically, it is 

known that the deuteron’s binding energy is around 2.2 MeV and the S-wave 

spin-triplet component dominates the deuteron’s wave function. Unlike in the 

deuteron, where the neutron and proton form a stable composite hadron, 

hadronic resonances are short-lived and the only way of inferring their 

existence and properties is through the scattering experiment. To simulate the 

ignorance of near-threshold resonances, a method is proposed to identify 

which of the threshold enhancements in Figure 1 is caused by a bound state 

without using the known properties of the deuteron. 

The objective of the study can be explicitly stated as follows: given a 

collection of S-wave scattering cross-sections, how to detect if the observed 

threshold enhancement is caused by a physical state? This makes deep 

learning a viable tool in the study of near-threshold phenomena. Machine 

learning techniques are an indispensable tool used in physical sciences (Carleo 

et al., 2019). Surprisingly, it is not yet applied to analyze near-threshold 

phenomena except in the work of Sombillo et al. (2020) where the general 

single-channel scattering was studied. In this work, a large size of training 

dataset was generated to solve the classification problem.  The scattering data 

were then used to infer the existence of a nucleon-nucleon-bound state. 

 

2. Methodology 

 

2.1 Simulating the Analytic Structure of S-matrix 

 

The S-matrix contains all the information that one needs about the interactions 

between two scattering hadrons. However, due to quantum chromodynamics’ 

nonperturbative nature in the low energy regime, the exact form of the S-

matrix cannot be derived. Nevertheless, there are general properties that must 

be satisfied by the S-matrix. First, causality (i.e., the scattering cannot precede 

the collision) implies that the scattering amplitude should be analytic in the 

first quadrant of the complex momentum plane (van Kampen, 1953; Eden et 

al., 1966). Imposing analyticity on the S-matrix means that there should be no 

singularities on the upper half of the complex momentum plane, except along 

the imaginary axis. Next is that the probability conservation requires that the 
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S-matrix be unitary. Guided by the analyticity, one can start with the condition 

that determines the amplitude’s singularities and then use unitarity to deduce 

the complete form of the S-matrix. By using all the parameters in the present 

study’s constructed model, a sizable training dataset can be generated. 

Actual scattering phenomena happen on the real momentum line. However, 

by allowing the scattering amplitude to take complex-valued momentum or 

energy, one can access useful information about the spectral properties of the 

physical process. The bound state corresponds to the simple pole on the 

positive imaginary momentum axis of an analytically continued scattering 

amplitude as shown in Figure 2a. The corresponding poles on the complex 

energy plane are shown in Figure 2b. The asymptotic solution ψ
p̅
(r) to the 

Schrödinger equation (Equation 1) has an exponentially decaying tail if p̅ = iγ 

where γ > 0.  

 

 

 

 

 

 

 
The red dots correspond to the bound state pole while the black dots to the virtual state pole.  

Figure 2. Bound and virtual state poles on complex momentum plane (a) and 

complex energy plane (b)  

A large scattering cross-section at the threshold is one manifestation that the 

colliding particles can form a bound state. However, a pole in the negative 

imaginary axis can also produce a large cross-section at the threshold. 

Reversing the sign of γ in Equation 1 gives a nonnormalizable wave function. 

This state is called a virtual state because it cannot represent a physical state 

and its only significance is that it gives a large enhancement at the threshold 

in the scattering cross-section (Taylor, 1972).  

Looking at the partial cross-sections in Figure 1, it would be very hard, if not 

impossible, to distinguish the two enhancements with two completely 

different physics without using the known properties of the deuteron. To help 

                                   ψ
p̅
  r →

1

r
eip̅r=

1

r
e-γr;     r → ∞ (1) 

(a) (b) 
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the DNN distinguish the two structures, an S-matrix parametrization in 

momentum representation was introduced in Equation 2. 

 

 

where the first factor, containing the η and the Λ parameters, is the background 

singularity simulating the left hand-cut in the scattering energy plane. The η 

determines whether the background is attractive or repulsive, while Λ controls 

how far the background is from the threshold. The second factor simulates a 

simple pole background through the parameter γfar. The third factor is 

responsible for the threshold enhancement in the simulated cross-sections. If 

γnear > 0 one gets a bound state pole enhancement. Otherwise, the enhancement 

is due to a virtual state pole. The relevant partial scattering cross-section was 

obtained using the relation in Equation 3.  

 

 

In the construction of cross-sections, the non-relativistic relation E = p2/2μ 

was used where μ is the reduced mass of two hadrons. Since one can control 

the sign of γnear, each cross-section can be appropriately labeled. 

A large size of the training dataset was generated by choosing random values 

of all the parameters in Equation 2. Specifically, 10 random values of 𝜂 in the 

interval  -4, -1  to simulate a repulsive background were generated. The 

repulsive background was chosen to mimic the Pauli spin blocking effect. 

After which, 20 random values of Λ were generated within the range 

 500, 700 MeV . The distance of the background from the threshold was 

deliberately limited for the later numerical experiment. Now, 1,000 random 

values of γ
near

 were generated within the interval  -0.9 Λ, 200 MeV . It was 

ensured that the γ
near

 is the closest singularity to the threshold by limiting its 

lower bound based on the value of Λ. Also, nucleon-nucleon potential is not 

very deep to create a bound state with very high binding energy. Thus, a 

maximum of 200 MeV will suffice. Finally, 20 values of γ
far

 were generated 

in the interval (– 2.0Λ,– |γ
near

|). This interval was chosen to ensure that γ
near

 is 

the nearest pole singularity. Overall, 4 x 106 labeled cross-sections were 

produced. Only 3.2 x 106 of these labeled cross sections were used for the 

direct training and kept the remaining 8 x 105 for the testing. 

= exp  2iη tan-1  
p

Λ
   

p+iγ
far

p-iγ
far

  
p+iγ

near

p-iγ
near

     (2) S(p) 

=  
S p  –1

2ip
 

2

    (3) | f (p) |2 
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One can readily recognize the importance of background singularities. If only 

S(p) = (p + iγ
near

) /(p – iγ
near

) is used, the cross-section becomes 

|f p |2 = 1/(p2 + γ
near
2 ). That is, there is no way to distinguish the cross-sections 

using only the sign of 𝛾𝑛𝑒𝑎𝑟. Without the background, the bound and virtual 

cross-sections are identical. The effect of background on the distinguishability 

of bound and virtual enhancements can directly affect the present DNN 

models’ performance. 

2.2 Optimization of DNN Model 

 

The DNN architecture is shown in Figure 3 with the input layer containing 

200 nodes, three hidden layers with 250, 100 and 50 nodes, and 2 output nodes. 

The input layer will take the cross-section values on the energy points (0, 100 

MeV). Other architectures were considered in a previous study (Sombillo, et 

al., 2020) and found that the hidden layer with architecture (250-100-50) 

performed better than the other architecture considered in the same study. The 

full analysis and the codes used are accessible in the author’s online code 

repository (Sombillo, 2020). 

 

 

 

 

 

 

 

The blue connection lines represent the weights while the green lines are the biases. 

Figure 3. The DNN architecture used in this study 

The hidden layer-nodes are equipped with rectified linear unit (ReLU) 

activation function and the output nodes with softmax. The chosen activation 

functions are appropriate for the classification problem because ReLU can 

minimize the vanishing of gradient and is much faster to compute compared 

with the functional call like in sigmoid activation. Softmax, on the other hand, 

has an automated way to minimize the activation of the wrong nodes and 

enhance the correct node, which is important in the classification problem. 
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The softmax cross-entropy was used as the cost function to match the softmax 

node in the output layer. 

The objective of the training was to get the optimal values of weights and 

biases that minimize the cost function. The training usually proceeded by 

feeding all the training datasets to the network to approximate the present state 

of the cost function. This is referred to as the forward pass. Then, the values 

of weights and biases were updated using some variant of gradient descent. In 

this study, two commonly used optimizers: Adam (adaptive moment) and 

AMSGrad (a variant of Adam) were used. The Adam is a first-order gradient 

optimization based on adaptive estimates of lower-order moments (Kingma 

and Ba, 2015). The AMSGrad, on the other hand, is a variant of Adam that 

enforces the learning rate matrix to be decreasing (Reddi et al., 2018). Both 

Adam and AMSGrad offer fast convergence which was essential for the 

present task. The construction of the DNN model, the hyperparameter settings 

of optimizers, and the training loop were made using Chainer (Tokui et al., 

2015; Akiba et al., 2017; Tokui et al., 2019). 

The performance of the DNN was improved by executing several training 

epochs. Here, one epoch corresponded to one complete forward pass and 

backpropagation of the entire training dataset. The mini-batch system was 

used in the forward pass to introduce stochasticity in the cost-function 

calculation. Figure 4 shows the performance of the present work’s DNN 

model using two optimizers during the training process. The blue lines 

represent the model’s performance on the training dataset, while the orange 

lines are for the testing set.  

 

 

 

 

 

 

 

 

 

 
 

Figure 4. The training and testing performance of the DNN 
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Notice that both the training and testing monotonically increased as the 

training progresses. There was no essential difference between the 

performance using two different optimizers. This implied that the optimization 

was not overfitting the parameters and the DNN achieved generalization 

within the training dataset. After 1,100 training epochs, 99.805 and 99.928% 

for the testing and training accuracies were obtained in Adam optimization, 

respectively. For the AMSGrad, 99.859 and 99.823% for the training and 

testing, respectively were achieved. Tables 1 and 2 show the confusion matrix 

for the corresponding trained model on the training and testing datasets. The 

result showed that the difficulty of identifying a bound state enhancement was 

comparable with that of the virtual enhancement. 

Table 1. Confusion matrix for the trained DNN Adam:200-[250-100-50]-2 

Total number of training items: 3,200,000 
 

True bound states: 

1,600,000 

Inferred bound states: 

1,596,753 

Inferred not bound states: 

3,247 

True virtual states: 

1,600,000 

Inferred virtual states: 

1,596,847 

Inferred not virtual states: 

3,153 

   

Total number of testing items: 800,000 
 

True bound states: 

400,000 

Inferred bound states: 

399,725 

Inferred not bound states: 

275 

True virtual states: 

400,000 

Inferred virtual states: 

399,715 

Inferred not virtual states: 

285 

 

Table 2. Confusion matrix for the trained DNN AMSGrad:200-[250-100-50]-2 

Total number of training items: 3,200,000 
 

True bound states: 

1,600,000 

Inferred bound states: 

1,596,768 

Inferred not bound states: 

3,232 

True virtual states: 

1,600,000 

Inferred virtual states: 

1,596,752 

Inferred not virtual states: 

3,248 

   
Total number of testing items: 800,000 
 

True bound states: 

400,000 

Inferred bound states: 

399,286 

Inferred not bound states: 

714 

True virtual states: 

400,000 

Inferred virtual states: 

399,274 

Inferred not virtual states: 

726 

 

The training of the DNN model above was based on the following numerical 

experiments. First, the inference capabilities of the DNN models were 

validated using the separable potential. It was important to ensure that the 

cross-sections of the validation set were independent of the training dataset. 

Then, the validated DNN models were deployed to analyze the nucleon-

nucleon scattering data. 
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2.3 Validation of the Trained DNN 

 

One of the promises of the deep learning approach is that a trained DNN model 

can generalize beyond the training set. It is, therefore, fitting to verify 

generalization before deploying the models to extract information from the 

experimental data. The author generated a set of independent cross-sections 

using the separable potential model. This kind of potential is expected for the 

nucleon-nucleon system because the interaction is short-ranged and highly 

dependent on momentum. 

2.3.1 Cross-Sections for the Separable Potential 

 

In the S-wave, a non-local potential in momentum representation took the 

form of Equation 4. 

 

 

 

 

where Λ is the cut-off parameter associated with the Yamaguchi form-factor 

while ζ is the coupling strength (Yamaguchi, 1954; Pearce and Gibson, 1989). 

The same symbol for the cut-off parameter in Equations 4 and 2 is used 

because both are related to the background singularities. 

 

The scattering amplitude was obtained by solving the Lippmann-Schwinger 

equation (Equation 5). 

 

 

 

 

where p and p’ are the incoming and the outgoing relative momenta, and p” 

is the off-shell momentum. Using the relation in Equation 3, the corresponding 

S-matrix takes the form in Equation 6. 

 

 

Inspection of the denominator in Equation 6 tells that for negative ζ (attractive 

potential), exactly one bound state pole can be produced. This is a general 

feature expected from a separable potential (Newton, 1982). The S-matrix in 

Equation 6 is called the energy-independent coupling model since ζ is just a 

constant. 

= ζ  
Λ

2

p2+Λ
2
  

Λ
2

p'
2
+Λ

2
  (4) v (p, p’)  

v(p,p') +  dp"
   ∞

0

 p"2v(p,p")
1

E – p''2/2μ + iϵ 
f (p",p" ) (5) f (p, p’) =  

=  
p + iΛ

p – iΛ
 

2

 
2 p – iΛ 2 –  ζπμΛ

3

2 p + iΛ 2 –  ζπμΛ
3
  (6) Sind (p)  
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In the work of Sombillo (2020), another separable potential was utilized to 

build a validation set of cross-sections. From Equation 6, it is not possible to 

produce resonance with attractive potential because of the absence of a 

centrifugal barrier in the S-wave (Pearce and Gibson, 1989). Thus, the 

coupling parameter was assigned to have some energy dependence to produce 

resonance. The energy dependence should be on-shell so that the coupling 

does not have to participate in the evaluation of the loop integral in Equation 

5. The resulting S-matrix when ζ is replaced with (E – Msep) ζ is given in 

Equation 7. 

 

 

where E is the on-shell center-of-mass scattering energy and Msep is some 

parameter to define the zero of amplitude. In this paper, Equation 7 is referred 

to as the energy-dependent coupling model. 

One interesting feature of Equation 7 is that it can produce a bound state pole 

or a near-threshold virtual state pole with an accompanying background 

simple pole. Because of this feature, the threshold enhancement produced in 

Equation 7 is relatively easy to distinguish than those produced by Equation 

6. 

It must be emphasized here that the S-matrix used to generate the validation 

cross-sections in Equations 6 and 7 have a second-order background pole 

while the training dataset S-matrix in Equation 2 has a branch cut background 

singularity. This means that the validation set is already outside the training 

dataset and that there is no reason to believe that the trained DNN can still 

work with Equations 6 and 7.   

2.3.2 Numerical Experiment and Discussion 

To validate the performance of the trained DNNs, the following numerical 

experimentation was performed. Using Equation 6, 100,000 cross-sections 

were produced by randomly selecting values of cut-off parameters within the 

range [N*100 MeV,  N + 1 *100 MeV], where N is some positive integer that 

was increased in the experiment. It was ensured that equal numbers of bound 

states and virtual states enhanced cross-sections were produced in the 

validation dataset.  The cross-sections were fed directly to the trained DNNs 

and the number of correct inferences was counted. The same procedure was 

used with the S-matrix model in Equation 7.  

=  
p + iΛ

p –  iΛ
 

2

 
2 p –  iΛ 2 –  (E –  Msep) ζπμΛ

3

2 p + iΛ 2 –  (E –  Msep) ζπμΛ
3  

(7) Sdep (p)  
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The result of the numerical experiment is shown in Figure 5. Each horizontal 

line contains 100,000 cross-sections with the blue lines for the energy-

independent model and the red lines are for the energy-dependent model. For 

low values of Λ (Λ < 300 MeV), the difference between the background 

singularities of the validation S-matrix and the training S-matrix manifest as 

low inference accuracy. This observation suggests that the inferencing power 

of DNN becomes highly dependent on the actual nature of backgrounds if they 

are very close to the threshold. Now, letting the Λ of separable potential to be 

around (300 < Λ < 700 MeV), high inference accuracy was obtained. Recall 

that this range of Λ coincided with the range of the same parameter in the 

training dataset parametrization. At this point, the difference between the two 

background singularities no longer matters.        

 

 

 

 

 

 

 

Figure 5. Performance of the trained DNN against the cross-sections generated by 

separable potential 

One surprising result is that even beyond the training range used for Λ, the 

inference accuracy was still very high. This demonstrates that the trained DNN 

can generalize beyond the training dataset. Now, at Λ ≥ 1000 MeV, the DNN 

trained using the typical Adam optimizer started to show some drop in the 

inference accuracy. Recall that for large Λ, the background singularity was 

already very far from the threshold and the enhancements produced by a 

bound state became identical with that of a virtual state. The drop of inference 

accuracy became more noticeable for the blue lines where the cross-sections 

were produced by energy-independent coupling. The near-threshold poles of 

these cross-sections did not have an accompanying simple pole. Thus, the 

DNN can only rely on the background second-order pole. The decrease in the 

inference accuracy was mitigated in the case of the red lines where the cross-

sections were produced by energy-dependent coupling. Here, the near-

threshold pole was always accompanied by a simple pole serving as a nearby 

background. 
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3. Results and Discussion 

 

The nucleon-nucleon scattering data used were obtained from the different 

partial-wave analyses and potential models that fit the data very well (Stoks et 

al., 1993, 1994; Rijken et al., 1996). The cross-sections on the center-of-mass 

energies (0, 100 MeV) were generated from the phase shift values in the online 

interactive repository (Nijmegen Group, 2005). Then, all the cross-sections 

were fed to the trained DNN to extract the inference output. 

 

The results for both models considered in this study are shown in Table 3. The 

two DNN models that were considered gave the same inference output for the 

nucleon-nucleon partial cross-sections and all the results were correct. That is, 

the spin-singlet cross-section enhancement was correctly identified as due to 

a virtual state pole and the spin-triplet to a bound state pole. This is surprising 

because the actual nucleon-nucleon interaction was far more sophisticated 

than the simple separable potential. Nevertheless, the results showed that the 

general properties of the S-matrix, using a simple parametrization in Equation 

2, are already sufficient to simulate the analytic structure of the nucleon-

nucleon S-matrix. 

 

Table 3. Inference output of the two trained DNN 

 

Spin 

configuration 

PWA93 

input 

ECS96 

input 

NijmI 

input 

NijmII 

input 

Nijm93 

input 

Reid93 

input 
       

Spin-singlet Virtual Virtual Virtual Virtual Virtual Virtual 
       

Spin-triplet Bound Bound Bound Bound Bound Bound 

 

How does a DNN differentiate the two seemingly similar structures at the 

threshold of nucleon-nucleon cross-section without using the known 

properties of deuteron? This is all because of the asymmetry in the possible 

number of singularities in the upper and lower half of the complex momentum 

plane. The S-matrix is considered as a meromorphic function of momentum 

(i.e., it is analytic except at those regions with poles). In addition, analyticity 

prevents the pole to appear on the upper half of the momentum plane except 

on the imaginary axis. Thus, all the other poles and singularities are packed 

together on the lower half-plane. This asymmetry in the distribution of 

singularities is exploited in the formulation and utilized by the DNN to 

distinguish the two structures. 

 

This study demonstrated that the general properties of the S-matrix are 

sufficient to generate the training dataset of a classification DNN. The trained 
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neural network gives accurate inferences even if the actual data is more 

complicated than the training dataset. The architectures and the type of 

optimizers used in the design of the network showed no significant difference. 

Both trained neural network models can be used to detect bound state given 

only the scattering cross-sections. 

 

The ability of the present study’s trained DNN to detect bound states, given 

only a cross-section with threshold enhancement, would help in identifying 

which enhanced signals in the experimental data corresponds to a dynamically 

generated physical state. However, in addition to dynamically generated 

states, another possible interpretation of the near-threshold phenomenon is the 

accidental appearance of a compact resonance state in the vicinity of the 

threshold. In the recent work of Sombillo et al. (2021), DNN that can probe 

the unphysical Riemann sheet of a coupled-channel scattering and count the 

number of poles were formulated. The distribution of poles on the different 

unphysical Riemann sheets can be used to deduce the nature of near-threshold 

phenomena in accordance with the pole-counting argument of Morgan 

(Morgan, 1992; Morgan and Pennington, 1993). In particular, if the 

enhancement is caused by an isolated pole in the second Riemann sheet, then 

it is most likely dynamically generated. If the pole in the second sheet is 

accompanied by another pole in the third sheet, then it is most likely a compact 

quark state resonance. Once the signal is identified to be caused by a physical 

state, the next step should be the determination of the pole parameters. At this 

point, a regression-type DNN designed to extract the pole parameters might 

be worth exploring in future studies. 

 

 

 

4. Conclusion 

 

In conclusion, the trained DNN can be used to detect the presence of hadron-

hadron bound state given only the scattering data. The difficulty of detection 

can only happen if the background singularities are far from the relevant 

threshold. In practical application, the S-matrix always has some background 

singularities and these can be exploited by the DNN to unambiguously 

interpret the signal as corresponding to bound state. The obtained accuracy 

was sufficiently high to unambiguously interpret the nature of threshold 

enhancement.  
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