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Abstract 
 

Non-pharmaceutical interventions (NPIs) were the mainstay to control the spread of 

COVID-19 at the start of the pandemic. Mathematical modeling has played an 

important role in determining the effects of these NPIs. An agent-based model and a 

compartmental model (i.e., extended susceptible-exposed-infectious-recovered) were 

formulated to simulate the spread of a respiratory infection between two neighboring 

communities. The study aimed to determine the effects of non-pharmaceutical 

interventions such as social distancing, community lockdowns and the use of protective 

gears. The chance of traveling to another community and within the community during 

the lockdown, and an initial percentage of exposed and infected individuals in both 

communities influenced the increase in the number of newly infected individuals on 

both models. It was shown through simulations that an increase in exposed individuals 

increased the number of new infections; hence, the need for amplified testing-isolation 

efforts. Protection level of 75-100% effectiveness impeded disease transmission. Inter- 

or intra-community travels can be an option given that strict preventive measures (e.g., 

non-pharmaceutical interventions) were observed. The ideal setup for neighboring 

communities was to implement lockdown when there is a high risk of local transmission 

while individuals observe social distancing, maximizing protective measures and 

isolating the exposed. The results of the agent-based and compartmental models 

showed similar qualitative dynamics; the differences were due to different 

spatiotemporal heterogeneity and stochasticity. These models can aid decision-makers 

in designing infectious disease-related policies to protect individuals while continuing 

population movement. 
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1. Introduction 

 

Respiratory infections like the common cold, influenza and pneumonia are the 

most usual and widespread illnesses suffered by people of all ages 

(Chonmaitree and Mann, 1995; Monto, 2002; Saunders-Hastings and 

Krewski, 2016; Subbarao and Mahanty, 2020), which have brought havoc 

worldwide. In the last century, the worst global outbreaks of influenza 

happened in 1918, 1957, 1968 and 2009, with the 1918 pandemic resulting in 

nearly 50 million deaths (Saunders-Hastings and Krewski, 2016). Shortly after 

the turn of the millennium, the severe acute respiratory syndrome coronavirus 

(SARS-CoV) was identified to be caused by a novel coronavirus resulting in 

an epidemic in 29 countries and regions (Tong, 2006). In early January 2020, 

another respiratory illness, ascribed to the coronavirus called SARS-CoV-2 

(more commonly known as Coronavirus Disease 2019 [COVID-19]), was 

identified and the outbreak of this disease was later announced by the World 

Health Organization (WHO) as a pandemic (Cheng et al., 2007; Cucinotta and 

Vanelli, 2020; Zheng, 2020). 

 

The proliferation of COVID-19 has driven change in mobility. According to 

studies, population movement is a major driver of transmission for infections 

like COVID-19 (Wang and Zhao, 2004; Cui et al., 2006; WHO, 2020). Such 

movements are necessary for aspects like the economy but are not possible 

during a pandemic until a vaccine against the disease is developed (Leung et 

al., 2020). Before a significant proportion of the population worldwide is 

vaccinated, non-pharmaceutical interventions (NPIs) are the mainstay to 

control the spread of COVID-19 (Anderson et al., 2020; Chowdhury et al., 

2020; Ferguson et al., 2020; Kissler et al., 2020). Different forms of 

community lockdowns were enforced in affected areas as means to delay the 

virus transmission (Anderson et al., 2020; Kissler et al., 2020; Luo and Tsang, 

2020). At the onset of the pandemic, lockdowns were implemented in almost 

all cities across the world. In the Philippines, lockdowns have evolved to target 

smaller communities but are tagged as critical zones (e.g., barangay or 

subdivision with a high number of active COVID-19 cases). Thus, this study 

focused on determining the dynamics of disease transmission between 

communities with different degrees of quarantine measures or lockdown 

stringency. 

 

During community lockdowns, NPIs often include social distancing in public 

spaces, closure of schools and workplaces, which limit public transportation 

within and between communities and reduce the sizes of gatherings (Anderson 
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et al., 2020; Kissler et al., 2020). These measures may need to be implemented 

for months to control the spread of infections (Lai et al., 2020). However, 

prolonging lockdowns may lead to unnecessary detriment to the economy 

(Chowdhury et al., 2020; Luo and Tsang, 2020). Thus, intermittent NPIs or 

rolling lockdowns are thought to be better options (Chowdhury et al., 2020; 

Ferguson et al., 2020; Ladha, 2020). One study suggested dynamic cycles of 

50-day suppression followed by 30-day relaxation over 18 months or until a 

vaccine arrives (Chowdhury et al., 2020), while in another, the rolling 

lockdown was advised and implemented in some countries like India (Ladha, 

2020).  

 

Mathematical models are often used in studying the dynamics of disease 

transmission. Oftentimes, two types of models are used: differential equation-

based model (EBM) and agent-based model (ABM) (Özmen et al., 2016). 

Simulation models like EBM and ABM are safe and efficient means for the 

analysis of real-world problems with complex dynamics like disease 

transmission. 

 

The ABM is a micro-scale model used to demonstrate movements and 

interactions among agents in a complex system to simulate their behavior 

(Gustafsson and Sternad, 2010). It has been extensively used in various fields 

such as biology to study population dynamics and simulate the interaction 

among the individuals in the population (An et al., 2009). Other application 

areas include land-use planning (Matthews et al., 2007) and disaster 

management (Dawson et al., 2011; Wang et al., 2016). An ABM that factored 

in population, area, vaccination rates and age structure from openly available 

data was used to observe transmission of an airborne infectious disease 

(Hunter et al., 2018). Xiao et al. (2011) utilized the epidemic diffusion model 

to simulate transmission via road systems. Several ABMs about COVID-19 

were also proposed to simulate its effect in a small town (Truszkowska et al., 

2021) and transmission risks in facilities (Cuevas, 2020). Giacopelli (2021) 

made use of ABM to explore the impact of lockdown, social distancing and 

tax in Italy. Shamil et al. (2021) employed ABM to simulate the spread of 

COVID-19 in a community. While Shamil et al. (2021) included the 

transportation of individuals in the community as an avenue in spreading the 

infection, the ABM in this paper was specific to interactions within a closed 

transportation system. 

 

Other studies employed EBMs in investigating the disease transmission 

between communities. Chen et al. (2014) used the susceptible-infected-
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recovered (SIR) epidemic model to observe transmission dynamics in two 

cities through transport. Mahmud et al. (2020) formulated a compartmental 

model where socioeconomic factors were used to determine the awareness 

level of people in each country and social consciousness was quantified and 

served as an input in the model. Other papers used well-known models such 

as the Malthusian and logistic growth models (Kamrujjaman et al., 2020a), a 

modified SIR model (Hassan et al., 2021) and delay differential equations 

(Kamrujjaman et al., 2020b) to investigate the trend of infections against 

actual data in different communities. However, these community transmission 

EBMs do not factor in immunity after recovery from a disease. There are 

diseases where the latency period plays a significant role in the dynamics of 

infection. In studying the dynamics of such diseases, an exposed group (E) is 

included since there is a latent period between being infected and becoming 

infectious (Bjørnstad et. al., 2020). Thus, the susceptible-exposed-infected-

recovered (SEIR) model was utilized in this study to account for the latent 

period. 

 

This study aimed to determine the dynamics of disease transmission between 

two communities with different rates of stringency in quarantine measures by 

studying the ABM and a compartmental model (extended SEIR) for a disease 

with a latency period. Quarantine measures in this study were defined to be 

NPIs such as the implementation of social distancing and lockdown in a 

community. The dynamics in the simulations considered other factors such as 

protective gears and practices, traveling to a nearby city, going out during 

lockdown and the initial percentage of infectious individuals. COVID-19 was 

considered as the example of respiratory infectious disease in the simulations. 

To the best of the authors’ knowledge, the effects of this particular 

combination of factors in neighboring communities have not yet been 

investigated in other studies. 

 

 

 

2. Methodology 
 

2.1 ABM 
 

The ABM was first used to simulate the transmission of respiratory infectious 

disease between two neighboring cities using the NetLogo simulation 

environment (Figure 1). 
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The model simulated the spread of respiratory infectious diseases such as 

(COVID-19) between two neighboring cities. The model explored the effects 

of factors such as the protection of individuals against infection, the chance of 

an individual traveling to another city, the chance of an individual leaving their 

houses during a lockdown, the initial number of exposed individuals and the 

initial number of infected individuals per city. These effects were determined 

under the presence or absence of social distancing protocol and the presence 

or absence of citywide lockdowns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. 

 

 

 

 

 

 

Individuals were initiated and placed randomly in each city. They may or may 

not travel to the neighboring city depending on their travel rate. In the presence 

of lockdown, an individual was expected to stay put but may leave their 

position depending on the going out rate. Their position determines if they 

would be infected or not. A person within 3 m from an infectious individual 

would have a 25% chance of being exposed, a person within 2 m from an 

infectious individual would have a 50% chance of being exposed while a 

person within 1 m from an infectious individual would have a 75% chance of 

being exposed. Exposed individuals may or may not develop into infected 

individuals depending on the protection. Protection (handwashing and use of 

alcohols or sanitizers) is the chance for an exposed individual to be an 

NetLogo simulation environment of transmission of respiratory infectious 

disease between two neighboring cities (blue and green areas) (Buhat 2020a, 
Buhat 2020b). Lockdown and social distancing may be set to on or off. The 

sliders for protection and the chance of going to other cities may be adjusted 

based on the desired level of each rate. The values in nb-infected, nb-

protected, nb-exposed, count turtles, City 1 infected, City 2 infected and init-
exp can be changed. 
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unexposed or uninfected individual again, while if the person fails to protect 

him or herself, the person would become infected. Infected individuals would 

then be infectious to those people surrounding them for 14 days. 

 

The “setup” button created individuals according to the parameter values 

chosen by the user and these individuals were divided equally among each 

city. Each individual had a chance of initially being exposed depending on the 

init-exp value and being infected depending on the init-inf value (init-inf1 for 

City 1 and init-inf2 for City 2). Once the model had been set up, the “go” 

button started the model simulations. “Go” started the model and ran it 

continuously until: (1) all individuals were infected, or (2) no more infections 

could occur. Each time step can be considered as a day or any suitable time 

unit would do. Parameters and values used in the ABM are summarized in 

Table 1. 

 

Table 1. Summary of variables used in the ABM 

 

Variable Description Default value 

   

Initial-human-

population 

Initial number of individuals to be divided equally 

in both cities 
100 

   

Infectious-days Number of days (ticks) for an infected individual 

to be infectious to other unexposed or uninfected 

ones 

14 days 

(ticks) 

   

Protection Chance for an exposed individual to be back to 

being susceptible again 
0 to 100% 

   

Travel-rate Chance for an individual to travel to the 

neighboring city 
0 to 100% 

   

Go-out-rate Chance for an exposed individual to move from 

his/her position during a lockdown 
0 to 100% 

   

Init-exp Initial percentage of exposed individuals in both 

cities 
0 to 75% 

   

Init-inf1 Initial percentage of infected individuals in City 1 0 to 75% 
   

Init-inf2 Initial percentage of infected individuals in City 2 0 to 75% 
   

Social-distancing If this switch is on, all individuals will try to stay 

1m apart. 
Yes/No 

   

Lockdown If this switch is on, all individuals will stay in their 

city and will only move based on the go-out-rate 
Yes/No 

 

The NetLogo file can be found online at Buhat (2020a) and a sample 

simulation can be viewed at Buhat (2020b). 
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2.2 SEIR Model 

 

The most common type of EBM in studying the dynamics of infectious 

diseases is the compartmental model, which is composed of a set of 

differential equations. The extended SEIR compartmental model (Figure 2) 

was considered to study the dynamics and transmission of respiratory 

infectious disease between two neighboring cities. Similar to the ABM, the 

extended SEIR simulates the spread of respiratory infectious disease and 

explores similar factors under the same preventive measures used in the ABM. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. 

 

 

 
 

In the model, the residents of City 1 and City 2 were compartmentalized to 

susceptible, exposed, infected and recovered. Note that classes with subscript 

1 were from City 1 and compartments with subscript 2 were from City 2. The 

susceptible residents were grouped into those that could not move around the 

city (S1 and S2) and the residents that may go out (Sg1 and Sg2). The individuals 

in S1 and S2 could not move around the city; hence, it was assumed in this 

study that they would not be exposed to the disease. Furthermore, individuals 

from S1 could be transferred to S2 or vice versa if the travel rate 𝛾 was non-

zero. However, it was assumed that they could not roam around the city. The 

other classes included exposed individuals (E1 and E2), infected individuals 

(I1 and I2) and the removed individuals (R1 and R2), who were no longer 

infectious. Some of the susceptible individuals S1 and S2 may leave their 

location and were transferred to Sg1 and Sg2 at a rate γ. In this model, if the 

NPI lockdown was implemented in the community, the go-out-rate γ would 

be set to 0. A portion λ of those that can move around would be immobile. Let 

β be the exposure rate of the individuals to the respiratory infectious disease. 

Extended SEIR model framework of transmission of respiratory infectious 
disease between two neighboring cities. The diagram describes the inflows 

and outflows of individuals in each compartment. The parameters aside from 

the arrows are rates for which the individuals transfer from a compartment to 

another compartment. 
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The exposure rate was the number of new exposed individuals caused by an 

infectious individual per unit of time. The rate at which an exposed individual 

in either of the cities became vulnerable or susceptible to the transmission of 

the virus was given by µ. Exposed individuals became infected with the 

disease at a rate of α for both City 1 and City 2 residents. Individuals in each 

city traveled to another city at a rate τ. Moreover, infected individuals became 

non-infectious and were transferred to the removed classes R1 and R2 at a rate 

δ. Table 2 shows the values that were used in the simulations performed in this 

study. 
 

Table 2. Summary of variables used in the extended SEIR model 
 

Variable/ 

parameter 
Description Default value References 

Si0 
 

Initial number of susceptible residents 

in City i (I = 1,2) 

100 − Ei0 − Ii0 

 

Assumed 

Sg
i0

 Initial number of susceptible residents 

in City i (i = 1,2) that can move around 

their respective cities 

0 

 

Assumed 

Ei0 Initial number of exposed individuals 

in City i (i = 1,2) 

0 to 50% 

 

Varied 

𝐼𝑖0 Initial number of infected individuals 

in City i (i = 1,2) 

0 to 50% 

 

Varied 

Ri0 Initial number of removed individuals 

in City i (i = 1,2)  

0 Assumed 

γ Go-out-rate of susceptible individuals 0 to 75% Varied 

β Exposure rate (number of new exposed 

individuals caused by an infectious 

individual per unit time) of an 

individual to the disease 

2/14 Buhat et al. 

(2021) 

1-μ Rate at which an exposed individual in 

either of the cities 

0 to 100% 

 

Varied 

λ Rate at which mobile susceptible 

individuals will be immobile  

1/2 Assumed 

α Rate at which exposed individuals 

become infected with the disease 

1/2 Eikenberry et 

al. (2020) 

τ Rate at which mobile individuals travel 

to another city 

0 to 100% 

 

Varied 

δ Rate at which infected individuals 

become non-infectious 

1/14 Eikenberry et 

al. (2020) 
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The dynamics in the extended SEIR compartment model are described in 

Equations 1 to 10.  

 

 

 

  

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Results and Discussion 

 

Key parameters were varied in both the ABM and the extended SEIR model. 

The effect of each parameter on the number of newly infected individuals as 

the number of the initially infected populations in both cities increased was 

determined. Their behavior under different scenarios (with or without social 

distancing measures and with or without lockdown protocol) for up to 500 

ticks was observed. 

 

(1) S1
'
= –γS1 + τS2 – τS1 – λSg

1
 

(2) Sg
1

'
= γS1 + τSg

2
 + μE

1
 – τSg

1
 – βSg

1

I1

S1 + Sg
1
 + E1 + I1 + R1

– λSg
1
 

(3) E1
'
= βSg

1

I1

S1 + Sg
1
 + E1 + I1 + R1

 + τE2 – (α + τ)E
1
 

(4) I1
'
= αE1 + τI2 – (δ + τ)I

1
 

(5) R1
'  = δI1 + τ(R2 – R1) 

(6) S2
'  = –γS2 + τS1 – τS2 – λSg

2
 

(7) Sg
2

'
= γS2 + τSg

1
 + μE

2
 – τSg

2
 – βSg

2

I2

S2 + Sg
2
 + E2 + I2 + R2

– λSg
2
 

(8) E2
'
= βSg

2

I2

S1 + Sg
1
 + E1 + I1 + R1

+ τE1 – (α + τ)E
2
 

(9) I2
'  = αE2 + τI1 – (δ + τ)I

2
 

(10) R2
'  = δI2 + τ(R1 – R2) 
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3.1 Initial Number of Exposed Individuals 
 

With a fixed percentage of go-out-rate, protection and travel-rate, the initial 

number of exposed individuals and initial infected population of both cities 

were varied. Scenarios, where both lockdown and social distancing are 

present, were simulated – one of them was off and both were not applied. 

 

It is exhibited in the ABM heatmaps (Figure 3) that with or without lockdown 

and social distancing, a larger infected population was observed when the 

initial exposed population was increased while keeping the other parameters 

constant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  

 

 

 

 

Resulting final number of infected individuals, from ABM simulations (red 

colorway) and extended SEIR model simulations (blue colorway), given 

various initial percentages of exposed individuals with a different initial 

percentage of infected individuals in City 1 (in %) and the initial percentage 
of infected individuals in City 2 (in %), with protection = 25%, travel-rate = 

25% and go-out-rate = 25% (during lockdown) 
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This implies that lockdown and social distancing are useless if there is still a 

significant exposed population. Testing will play an important role here since 

identifying the infected ones and isolating them will lessen the number of 

exposed individuals. Comparing the scenarios when the initial exposure was 

25% of the population, the case with no lockdown and with social distancing 

had a slightly bigger infected population compared with the case with 

lockdown and no social distancing. This suggests that minimizing the travel 

of individuals is still better than social distancing. It can also be noticed in 

each scenario that a larger number of initially infected in both cities (high 

prevalence) resulted in a further greater infected population. Similar to the 

ABM simulations, heatmaps from the extended SEIR simulations showed that 

in each scenario, a greater number of initially infected in both cities resulted 

in a larger infected population. Furthermore, as the initially exposed 

population increased, the infected population increased as well. This indicates 

that lockdown and social distancing may not be effective in controlling the 

spread of infection if there is still significantly exposed population. A lesser 

infected population was noticed when social distancing was enforced as 

compared with lockdown implementation. This means that moving within the 

city will not worsen the situation as long as strict physical distancing is 

followed. 

 

An obvious difference in the result of the two models was that social 

distancing had a better effect in the extended SEIR model compared with 

lockdown (see blue heatmaps upper right and lower left subfigures). This is 

contrary to the result in ABM. This inconsistency was anticipated since 

interactions between individuals were removed in the EBM. Furthermore, 

disease progression in the SEIR was similar for all individuals. This property 

resulted in almost perfect employment of social distancing in the SEIR model 

when it was “on” (i.e., only a small part of the population transferred to the 

exposed compartment). On the other hand, applying social distancing in the 

ABM involved stochasticity – that is, social distancing will only lessen the 

probability of and will not eliminate exposure of each agent to the infection. 

Note that this probability varied for each agent. 

 

3.2 Protection against Infection 

 

In the previous subsection, it was observed that a larger initial exposed 

population increased the number of infections. Now, the effect of varying the 

protection rate from 0 to 100% was observed, with a fixed percentage of 

initially exposed individuals, travel-rate and go-out-rate. 
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Simulation results from ABM and extended SEIR model (Figure 4) showed 

that having individual protection was necessary to lessen the number of 

infections in two cities. Based on the results of ABM, additional NPIs were 

needed when protection was not 100% effective. It can also be seen that 

imposing a lockdown coupled with protection was better than social 

distancing with protection especially when the protection level was very low. 

These were not the case when the extended SEIR model was used. It is 

depicted from the heatmaps of the SEIR model simulations that increasing the 

protection fully was not enough to reduce the number of infections. When 

additional interventions were introduced, it was shown that protection with 

social distancing was better than protection with the lockdown. The results of 

having social distancing with lockdown were almost the same when there was 

no lockdown. This was again due to the employment of an almost perfect rate 

of physical distancing when it was “on” and the homogeneous mixing of 

individuals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.  

 

 

 

 
 

Protection level was varied. Resulting final number of infected individuals, 

from ABM simulations (red colorway) and SEIR model simulations (blue 

colorway), given various protection rate of individuals with a different initial 

percentage of infected individuals in City 1 (in %) and the initial percentage 
of infected individuals in City 2 (in %), with initial exposed percentage = 

25%, travel-rate = 25% and go-out-rate = 25% (during lockdown) 
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Travel rate was varied. Resulting final number of infected individuals, from 
ABM simulations (red colorway) and SEIR model simulations (blue 

colorway), given various travel rate of individuals with a different initial 

percentage of infected individuals in City 1 (in %) and the initial percentage 
of infected individuals in City 2 (in %), with initial exposed percentage = 

25%, protection = 25% and go-out-rate = 25% (during lockdown) 

It can also be inferred from the SEIR heatmaps that even though these control 

measures were observed, the number of infections was still high when there 

were at least 25% infected individuals present in each city. This implies that 

early detection of infected individuals and isolating them together with contact 

tracing are very important to keep the number of infected individuals at a 

minimum. 

 

3.3 Effect of Traveling between Cities 

 

In the previous subsection, it was observed that as protection increased, the 

number of infected individuals between the two cities decreased. In this phase, 

the effect of varying the travel-rate from 0 to 100% was examined with a fixed 

percentage of initially exposed individuals, protection and go-out-rate. 
 

Both simulations from the ABM and SEIR model showed that increasing the 

travel-rate had no significant effect in all scenarios given that the other 

parameters were all constant (Figure 5).  
 

 

 

 

 

 
 

 

 
 

 

 

 
 

 

 

 
 
 

 
  

 

 

 

 
Figure 5.  
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Go-out-rate was varied. Resulting final number of infected individuals, from 
ABM simulations (red colorway) and SEIR model simulations (blue 

colorway), given various go-out-rate of individuals during lockdown with a 

different initial percentage of infected individuals in City 1 (in %) and the 

initial percentage of infected individuals in City 2 (in %), with initial exposed 

percentage = 25%, protection = 25% and travel-rate = 25% 

Individuals could travel between two cities if there were at most 25% infected 

individuals present in both cities, protection against infection was present and 

at least social distancing was observed. Imposing a lockdown, social 

distancing or both was necessary to minimize the number of infections as what 

can be observed from the heat maps. Also, SEIR heatmaps showed that the 

infected population was greatest when social distancing was not employed. In 

all four scenarios, changes in travel-rates did not affect the infected 

population. 

 

3.4 Effect of Traveling within the City during Lockdown 

 

With a fixed percentage of travel-rate, the protection and initially exposed 

individuals, the go-out-rate and the initial infected population of both cities 

were varied. Scenarios such as lockdown within the city and application of 

social distancing were tested. 

 

In both models projected in Figure 6, the infected population was greater when 

social distancing was not practiced. Go-out-rate had little (ABM) to no effect 

(SEIR) in terms of infected population when social distancing was in effect. 

This means that if the population follows proper social distancing protocols, 

the number of infected can be kept at a minimum. On the other hand, the effect 

of the go-out-rate was evident when there was no social distancing. Thus, in 

situations or places where social distancing is difficult to implement, the 

number of mobile individuals should be reduced. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  
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Comparing the upper red and the upper blue heatmaps, the go-out-rate affected 

the ABM and had very little to no effect in the extended SEIR model. This 

disagreement was again a consequence of the stochasticity (applied in ABM) 

in the exposure rate when social distancing was “on.” Agents in the ABM were 

more likely to interact as go-out-rate was increased, which may heighten the 

infected population. On the other hand, since individuals in each group in 

EBM had the same behavior or followed the same pattern, go-out-rate had no 

impact when physical distancing was applied. In other words, since a high 

level of social distancing was set in the simulations, almost all individuals who 

moved around perfectly followed physical distancing. 

 

 

 

4. Conclusion and Recommendation 

 

Simulations for both ABM and SEIR model showed that isolation of infected 

individuals is necessary to reduce the exposed individuals since greater 

exposure means greater chances of infection. Mass testing will play an 

important role since isolating the infected ones will lessen the exposed 

individuals. Protection measures for individuals against infection are another 

vital step in reducing the chance of infection. A protection level of at least 

75% together with the practice of social distancing and lockdown is 

recommended (and maximized to 100% if possible) to lessen disease 

transmission between cities. Frequent washing or cleaning of hands, wearing 

of a mask and other protective measures should then be a habit for each 

individual. During the lockdown, the go-out rate matters only when social 

distancing is not practiced. On the other hand, the travel rate exhibited a 

minimal effect on the number of newly infected individuals for both models. 

So long as NPIs are observed properly, mobility can be an option during 

pandemics. 

 

Mathematical models in this study were tested for different combinations of 

NPIs to determine their efficacy. The application of the social distancing 

measure on the simulations proved to be an effective measure to decrease the 

number of newly infected individuals. The best scenario would still be an 

implementation of both social distancing and lockdown within cities. 

Relatively, the absence of both NPIs would generate the most number of new 

infections and is highly discouraged. 

 

Both the ABM and compartmental (SEIR) model were favorable in simulating 

the transmission of infectious respiratory diseases in neighboring cities. Their 



C. A. H. Buhat et al. / Mindanao Journal of Science and Technology Vol. 19 (2) (2021) 164-183 

179 

 

simulations both exhibited akin behaviors when varying the parameters since 

both models were designed after each other. However, discrepancies in 

estimates occurred on the NPI comparisons for ABM and extended SEIR due 

to the heterogeneous and homogeneous mixing of individuals, respectively. 

Due to minimal heterogeneity and stochasticity effects, SEIR generated higher 

estimates of the infected population compared with the ABM. The ABM took 

a longer simulation time to reach similar outbreak values as SEIR since ABM 

considered both spatial and temporal aspects of the outbreak and each 

individual (agents) had their stochastic characteristic and interaction. 

 

Overall, the study demonstrated that between two cities, the practice of NPIs, 

such as social distancing and lockdown is necessary to reduce the risk of 

infection. The practice of preventive measures, isolation of infected 

individuals and protection level of 75-100% effectiveness is the ideal setup to 

inhibit transmission of respiratory infectious diseases such as SARS-CoV-2, 

especially when community lockdown rules are to be relaxed. Policymakers 

can use the results of both models in designing infectious disease-related 

policies to protect individuals while continuing population movement. 

 

The model only considered selected dynamics of individuals only when inside 

the two cities. Transmission of the disease was done through a distance 

function, and all infected individuals were assumed to recover after 14 days 

of infection. Death was not considered in the analysis of both model 

simulation results as the study focused on the transmission of the disease only. 

Results of the study showed the minimal effect of mobility during disease 

outbreaks but only through strict implementation and observance of the NPIs. 

Further extensions of the study may incorporate other temporal-only and 

spatial-temporal models. Results and dynamics from SEIR and ABM of this 

study can be a basis for comparison or improvement, and further include 

additional factors such as variants and vaccinations among others. 
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